簡易檢索 / 詳目顯示

研究生: 楊朝偉
Wei, Yang-Chau
論文名稱: 巨磁阻鍶鐵鉬氧之鐵鉬價數探討及鍶鉬氧相殘留
Valences of Fe and Mo and SrMoO4 residual of Sr2FeMoO6
指導教授: 方滄澤
Tze, Fang-Tsang
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 132
中文關鍵詞: 巨磁阻
外文關鍵詞: CMR
相關次數: 點閱:63下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要:
    本研究是以不同方法下去分析當Mo漸漸加入到 中形成 時,Mo和Fe價數是否也會有所變化。在ESCA分析中發現還原氣氛燒結下試片,當加入的Mo含量超過x=0.6時,Mo的價數會由5價居多的狀況轉變成6價居多的狀況。同樣的試驗在空氣下燒結的試片並沒有發生,都是以Mo 6價顯現。Mo 6價比5價的離子半徑來的更小,所以低Mo含量時以5價居多的結果,證實在還原氣氛下燒結所產生的氧空缺,可以有效的促進Mo擴散進入 。當Mo含量達到一個門檻時,Mo才改以6價的狀態繼續的進入 中。
    在熱分析實驗中證實在Mo含量高的試片中,仍然有氧空缺的存在,不過比起低Mo含量的試片來的低很多。而電性量測的實驗也可以直接證實在Mo含量未高過x=1.0時,Tc溫度下的電子傳導機制以跳躍為主,並且也符合Mo含量增加可以降低電阻率的預測。

    Abstract
    In this study , we observed the valence of Mo and Fe when different ratio of Mo added to to perform .In the ESCA analysis for samples sintering in reducing atmosphere , we found that the valence of Mo changed from 5 to 6 when the ratio of Mo exceeded more than x=0.6. When the same test for samples sinter in air, the result was different and all the valences of Mo were 6. Because the ionic radius of Mo with valences in 6 was smaller than 5 , it could prove that the oxygen vacancy obtained from sintering in reducing atmosphere can enhance the Mo ion to diffuse into with the Mo valences in 5 when samples contained low ratio of Mo. This phenomenon occurred until the ratio of Mo reached too high , and the Mo started to diffuse into with valences in 6.
    In the thermal analysis , we could find the existing of oxygen vacancy in the samples with high ratio of Mo. But its quantity was much less than the sample with low ratio of Mo. In electrical measurement, we also found that the conduction mechanism of electrons and the hopping theory fitted well with the prediction of the quantity of Mo in previous literature when the ratio of Mo was not more than x=1.0 and the temperature was lower than Tc.

    第一章 緒論p15 1-1 前言p15 第二章 理論基礎與文獻回顧p19 2-1 磁性起源p19 2-2 磁性種類p21 2-2-1 順磁性(Paramagnetism)p22 2-2-2 反磁性(Diamagnetism)p24 2-2-3 鐵磁性(Ferromagnetism)p25 2-2-4 反鐵磁性(Antiferromagnetism)p26 2-2-5 亞鐵磁性(Ferromagnetism)p27 2-3 磁阻概念簡介p29 2-3-1 正常霍爾效應p29 2-3-2 常磁阻(OMR: Ordinary Magnetoresistance)p30 2-3-3 鐵磁性材料中磁場與電流的效應p31 2-3-4 異向性磁阻(Anisotropic Magnetoresistance)p31 2-3-5 巨磁阻(GMR: Giant Magnetoresistance)p32 2-3-6 自旋閥(Spin valve)p33 2-3-7 龐磁阻(CMR: Colossal Magnetoresistance)p36 2-3-8 穿隧磁阻(TMR:Tunneling magnetoresistance)p40 2-3-9 磁阻材料的應用p42 2-4 晶體結構性質p47 2-4-1 鈣鈦礦結構(Perovskite structure)p47 2-4-2 Sr2FeMoO6 結構p49 2-4-3 SrFeO3-x結構p56 2-4-4 雙鈣鈦礦Sr2FeMoO6結構中B位置之有序無序排列p61 2-5 內部物理機構p72 2-5-1 超交換交互作用p72 2-5-2 Sr2FeMoO6之半金屬特性(half-metallic nature)p75 2-5-3 Sr2FeMoO6之低場磁阻效應p80 2-5-4 可變程跳躍模型(Variable Range Hopping Model)p82 2-5-5 小極化子跳躍模型(Small Polaron Hopping Model)p85 2-5-6 Sr2FeMoO6結構中B位置離子的價數問題p87 第三章 實驗方法與步驟p89 3-1 實驗藥品p89 3-2 實驗流程p90 3-3 試片準備p91 3-4 分析與量測p92 3-4-1 X光繞射分析p92 3-4-2 電性量測p92 3-4-3 ESCA量測分析p93 3-4-4 熱分析觀察p97 第四章 結果與討論p98 4-1利用ESCA來分析Mo價數問題p98 4-1-1還原氣氛下燒結的Mo價數分析p98 4-1-2空氣下燒結的Mo價數分析p105 4-1-3: 還原氣氛和空氣下燒結,Fe的ESCA能譜p109 4-2 利用熱分析來分析氧空缺的多寡p114 4-3 還原氣氛下Mo添加量對導電行為的影響p121 4-3-1 Mott[70]的可變程跳躍(variable range hopping,VRH )理論p122 4-3-2 小極化子跳躍(small polarons hopping,SPH)的熱激活化模型p123 第五章 結論p128 參考文獻 p129 圖表目錄 圖2-1 順磁性物質的磁化係數與溫度的關係和磁矩排列方式p23 圖2-2 反磁性物質的磁化強度與外加磁場的關係p24 圖2-3 鐵磁性磁矩排列和自生磁化與溫度的關係p26 圖2-4 反鐵磁性物質磁矩排列和磁化係數與溫度關係p27 圖2-5亞鐵磁性物質磁矩排列和自生磁化與溫度的關係p28 圖2-6 霍爾效應示意圖p30 圖2-7 (a)在高磁場時磁矩相互平行排列造成的等效電阻 (b)在零磁場時兩磁層反平行排列,其等效電阻p35 圖2-8 鑭鍶錳氧中電阻對Sr成分的變化p37 圖2-9 鑭鍶錳氧的磁性相圖p37 圖2-10 錳酸鑭的鈣鈦礦結構p38 圖2-11 八面體位置上過渡離子d軌域的及格場分裂狀況p39 表2-1 為不同種類磁阻之數量及比較p41 圖2-12 (a)自旋閥式磁電阻的磁性隨機記憶體(b)MRAM之錄寫方式 (c)MRAM之讀出方式p44 表2-2 為各種記憶體的優劣比較p46 圖2-13 鈣鈦礦晶體結構p49 圖2-14 Sr2FeMoO6 雙鈣鈦礦結構,Fe、Mo在B位置有序交替排列p50 表2-3 A2FeMoO6 (A =Ca、Sr、Ba)之各種性質比較p51 圖2-15 無外加磁場與施加磁場下晶粒間的電子穿隧行為p53 圖2-16 外加磁場時Sr2FeMoO6溫度對電阻率之關係p54 圖2-17 .Sr2FeMoO6之電子能態結構p55 圖2-18比較各種磁阻材料溫度對磁阻及對相對飽和磁化量之關係 p56 圖2-19 SrFeO2.5結構圖其中較大黑點為氧的缺陷p58 圖2-20 SrFeO2.5在從0℃到1000℃之晶格常數變化p59 圖2-21 (a)立方晶結構SrFeO3在(110)面的投影 (b)斜方Brownmillerite 結構的SrFeO2.5在八面體當中的一個氧形成空位,導致其餘氧形成四面體結構p59 圖2-22 SrFeO2.5 之Brownmillerite結構p60 圖2-23 Order與Disorder狀態的Sr2FeMoO6之XRD繞射圖中超晶格p63 圖2-24.B'與B"有序與無序排列狀態在不同溫度下的(a)晶格常數變 (b)單胞體積變化(c)正方結構應變變化s=c-(2)1/反射面變化比較p65 圖2-25.B'與B"有序與無序排列狀態之溫度對八面體FeO6及MoO6旋轉角之關係p66 圖2-26 比較B'與B"有序與無序排列在300K及4.2K的外加磁場對 磁阻之關係p67 圖2-27 利用Monte Carlo模擬Sr2FeMoO6之B位置的有序程度對磁化量之關係p69 圖2-28 B位置錯位程度對應居里溫度點和飽和磁化量的關係p67 圖2-29 利用Monte Carlo模擬Sr2FeMoO6之氧缺陷的程度對應磁化量的關係p71 圖2-30 MnO的晶體和磁性結構p73 圖2-31 氧離子的2p軌道形狀p74 圖2-32 (a)非磁性金屬(b)一般磁性金屬(c)磁性半金屬的能帶示意圖p77 表2-4 不同磁性半金屬的物理性質比較p78 圖2-33 Sr2FeMoO6之電子能帶結構p79 圖2-34 自旋間相互以反鐵磁性偶排列p79 圖2-35 低場磁阻效應對飽和磁化量之關係圖p81 圖2-36 低場磁阻效應對陽離子無序程度之關係圖p81 圖2-37 可變程跳躍模型p83 圖2-38 (a) 在無扭曲晶格的電子位能(b) 大極化子的波函數(c) 電子的位能井p86 表3-1 實驗藥品的純度及生產廠商p89 圖3-2 4點探針示意圖p93 圖3-3 ESCA儀器示意圖p94 圖3-4 電子吸收能量示意圖p95 圖3-5 電子L-S藕合的示意圖p96 圖4-1:還原氣氛下1200度持溫4小時燒結之X-ray繞射圖p101 圖4-2:1200度持溫4小時還原氣氛下燒結,Mo的3d能譜p102 圖4-3:軟體解析各試片的Mo 3d能譜p103 圖4-4:Mo 6價所佔的的百分比對成分的改變p104 圖4-5:空氣下1200度持溫4小時燒結之X-ray繞射圖p107 圖4-6:1200度持溫4小時空氣下燒結,Mo的3d能譜p108 圖4-7:軟體解析各試片的Mo 3d能譜p109 圖4-8:1200度持溫4小時還原氣氛下燒結,Fe的2p能譜p112 圖4-9:1200度持溫4小時空氣下燒結,Fe的2p能譜p113 圖4-10:x=1.0還原氣氛下的熱分析結果p117 圖4-11:x=0.9 還原氣氛下的熱分析結果p118 圖4-12:x=0.8 還原氣氛下的熱分析結果p119 圖4-13:x=0.6 還原氣氛下的熱分析結果p120 圖4-14:還原氣氛下,Mo含量對氧空缺數量的變化p121 圖4-14:Mo含量x=0.6還原氣氛燒結試片的溫度對電阻率圖p125 圖4-15:Mo含量x=0.8還原氣氛燒結試片的溫度對電阻率圖p125 圖4-16:Mo含量x=1.0還原氣氛燒結試片的溫度對電阻率圖p126 圖4-17:還原氣氛下燒結試片電性之Mott VRH fitting圖p126 圖4-18:還原氣氛下燒結試片電性之SPH fitting圖p127

    參考文獻

    1 Baibich M N Broto J M , Fert A , Nguyen Van Dau F , Petroff F , Etienne P , Creuzet G , Friederich A and Chazelas, J. Phys. Rev. Lett., 61, 2472 (1988)
    2 M McCormack S Jin T H Tiefel, R A Fastnacht, R Ramesh and L H Chen, Science, 64, 413 (1994)
    3 K Chahara T Ohno , M Kasai and Y Kozono, Appl. Phys. Lett., 63, 1990 (1993)
    4 Jin S Tiefel T H , Fleming R M , Phillip J M and Ramesh R, Appl. Phys. Lett., 64, 3045 (1994)
    5 林昭吟, 物理雙月刊, 26卷, 6期, 584頁 (2000)
    6 Kobayashi K -I Kimura T , Sawada H , Terakura K and Tokura Y, Nature, 395, 677 (1998)
    7 王銀國 郭光宇 物理雙月刊, 27卷, 4期, 578頁 (2005)
    8 Prinz G A Science, 282, 1660 (1998)
    9 Wolf S A Awschalom D D , Buhrman R A , Daughton J M , von Moln'ar S , Roukes M L , Chtchelkanova A Y and Tregger D M, Science, 294, 1488 (2001)
    10 Parkin S S P et al, Proc. IEEE, 91, 661 (2003)
    11 葉林秀 李佳謀 , 徐明豐 , 吳德和, 物理雙月刊, 26卷, 4期, 607頁 (2004)
    12 Soshin Chikazumi著 張煦 , 李學養 譯, "磁性物理學", 聯經出版社, Pages (1982).
    13 Langevin P, Ann. Chem. Et Phys., 5, 70 (1905)
    14 O'Handley R C, "Modern Magnetic Materials: Principle and Applications", John Wiley & Sons, Pages (1999).
    15 Dieny B et al, J. Mag. Materials, 136, 335 (1994)
    16 Dieny B et al, Phys. Reys. Rev. B, 43, 1297 (1991)
    17 中華民國磁性技術協會訊, 第16期, (1999)
    18 Pohm A V et al, "paper CB-1." INTERMAG, 97, NEW Orleans, Louisiana, USA, Apirl 1 (1997)
    19 Tang D D et al, IEEE Trans. Mag, 31, 2603 (1995)
    20 中華民國磁性技術協會訊, 第12期, (1997)
    21 工業材料, 129, 138 (1997)
    22 Lennard-Jones J E, Trans. Faraday Soc, 28, 33 (1932)
    23 Megaw H D, Proc. Phys., 58, 133 (1946)
    24 Nakagawa T, J. Phys. Soc. Jpn., 24, 806 (1968)
    25 Anderson P W, Phys. Rev., 79, 350 (1950)
    26 Longo J M and Ward R, J. Am. Chem. Soc., 83, 1088 (1961)
    27 Longo J M and Ward R Sleight A W Inorg. Chem., 1, 245 (1962)
    28 Okuda T Tomioka Y , Okimoto Y , Kumai R and Kobayashi K-I, Phys. Rev. B., 61, 422 (2000)
    29 Venkatesan M Greneche J M , Suryanarayanan R and Coey J M D, Phys. Rev. B., 63, 174403-1 (2001)
    30 Ziese M, Rep. Prog. Phys, 65 (2), 151 (2002)
    31 Borges R P and Thomast R M, J. phys.: Condens. Matter, 11, 445 (1999)
    32 Kuniarhara K and hirose Y Nakamura T Mater. Res. Bull., 16, 321 (1998)
    33 Moeller C W and Ward R Patterson F K Inorg. Chem., 2, 196 (1963)
    34 Rao C N R and Raveau B, "Colossal Magnetoresistance, Charge Ordering and Related Properties of Manganese Oxides", World Scientific, Pages (1998).
    35 Blamire M G Evetts J E , Mathur N D , Isaac S P , Teo B S , Cohen L F and MacManus-Driscoll J L, Phil. Trans. R. Soc. A, 356, 1593 (1998)
    36 Ogasawara T Kise T , Ashida M , Tomioka Y , Tokura Y and Kuwata-Gonokami M, Phy. Rev. Lett., 85, 9, 1986 (2000)
    37 Wu M S and Ko T F Fang T T J. Mater. Sci. Lett., 20, 1609 (2001)
    38 Sherwood R C and Petter J F MacChesney J B J. Chem. Phys., 43, 1907 (1965)
    39 MacChesney J B and Buchanan D N E Gallagher P K J. Chem. Phys., 41, 2429 (1964)
    40 Greaves C and Fender B E F Tofield B C Mater. Res. Bull., 10, 737 (1975)
    41 Tofield B C, React. Solids [Proc. Int. Symp.], 8, 253 (1976)
    42 Takeda T Yamaguchi Y , Tomiyoshi S , Fukase M , Sugimoto M and Watanabe H, J. Phys. Soc. Japan,, 24, 446 (1968)
    43 Ea N, " Thèse Docteur 3em cycle", Université de Bordeaux, Pages (1983).
    44 Ea N Grenier J C , Pouchard M and Hagenmuller P, J. Solid State Chem., 58, 243 (1985)
    45 Shin S and Yonemura M, Mat. Res. Bull., 13, 1017 (1978)
    46 García-Landa B Ritter C , Ibarra M R , Blasco J , Algarabel P A , Mahendiran R , and García J, Sol. Stat. Comm., 110, 435 (1999)
    47 Woodward P Hoffmann R D , and Sleight A W, J. Mater. Res., 9, 2118 (1994)
    48 Galasso F S, "Structure, Properties and Preparation of Perovskite-type Compound", pergamon Press, New York, Pages (1969).
    49 Navarro J Balcells Li , Bibes M , Roig A , Martý´nez B , and Fontcuberta J, Appl. Phys. Lett., 78, 781 (2001)
    50 Asano H Ogale S B , Garrison J , Orozco A , Li E , Li Y H , Smolyaninova V , Galley C , Downes M , Rajeswari M , Ramesh R , and Venkatesan T, Appl. Phys. Lett., 74, 3696 (1999)
    51 Sarma D D Sampathkumaran E V , Ray S , etc, Solid State Commum., 114, 465 (2000)
    52 Sanchez D Alonso J A , Hernandez M G , Martinez-Lope M J , Martnez J L , Mellergard A, Phys. Rev. B., 65, 10, 104426 (2002)
    53 Moritomo Y Shimamoto N , Xu X , Machida A , Nishibori E , Takata M , Sakata M , and , Nakamura A, Jap. J. Appl. Phys., 40, L672 (2001)
    54 Ogale A S Ogale S B , Ramesh R , and Venkatessan T, Appl. Phys. Lett., 75, 537 (1999)
    55 Kramers H A, Physica, 1, 182 (1934)
    56 汪建民, "陶瓷技術手冊(上)", 中華民國粉末冶金協會569, Pages (1994).
    57 de Groot R A Mueller F M , van Engen P G , and Buschow K H J, Phys. Rev. Lett., 50, 2024 (1983)
    58 張慶瑞、衛榮漢, 物理雙月刊, 25卷, 3期, 390頁 (2003)
    59 Kobayashi K -I Kimura T , Sawada H , Terakura K , and Tokura Y, Phys. Rev. B., 59, 11159 (1999)
    60 Kim T H Uehara M , and Cheong S W, Appl. Phys. Lett., 74, 1737 (1999)
    61 Sharma A et al, Appl. Phys. Lett., 83, 2384 (2003)
    62 Niebieskikwiat D Caneiro A , and Sanchez R D, Phys. Rev. B., 64, 180406 (2001)
    63 Yuan C L Zhu Y , and Ong P P, Appl. Phys. Lett., 82, 934 (2003)
    64 Wang K and Sui Y, Solid State Commun., 129, 135 (2004)
    65 Yin H Q Zhou J -S , Zhou J -P , Dass R , McDevitt J T , and Goodenough J B, Appl. Phys. Lett., 75, 2812 (1999)
    66 Maignan A Martin C , Hervieu M , and Raveau B, J. Magn. Magn. Mater., 211, 173 (2000)
    67 Venkatesan M et al, J. Mater. Chem., 12, 2184 (2002)
    68 Yuan C L Wang S G , Song W H , Yu T , Dai J M , Ye S L ,and Sun Y P, Appl. Phys. Lett., 75, 3853 (1999)
    69 García-Hernández M Martinez-Lope J L , Casais M T , and Alonso J A, Phys. Rev. Lett., 86, 2443 (2001)
    70 N F Mott, " Metal -Insulator Transitions 2nd edition", Taylar&Francis, 51, Pages (1990).
    71 Chattopadhyay B Poddar A , Das S , Majumder C , and Ranganathan R, J. Alloys and Compounds, 28-33, 366 (2004)
    72 Adv. in phys., 18, Jan, (1969)
    73 Charles Kittel, "Introduction to Solid State Physics seventh edition", John Weily & Sons, Pages
    74 Itoh M Ohta I , and Inaguma Y, Mater. Sci. Eng. B., 41, 55 (1996)
    75 Gayone J E Moreno M S , Abbate M , Caneiro A , Niebieskikwiat D , Sanchez R D , de Siervo A , Landers R , and Zampieri G, Sol. Stat. Comm., 120, 161 (2001)
    76 Yamamoto T Linden J , Karppinen M , Yamauchi H , and Pietari T, Appl. Phys. Lett., 76, 2925 (2000)
    77 Linde´n J Karen P , Kjekshus A , Miettinen J , Pietari T , and Karppinen M, Phys. Rev. B., 60, 15251 (1999)
    78 D. D. Sarma, P. Mahadevan, T. Saha-Dasgupta, S. Ray, and A. Kumar, "Electronic structure of Sr2FeMoO6."Physical Review Letters, 85, 12, 2549-2552 (2000)
    79 S. Ray, A. Kumar, D. D. Sarma, R. Cimino, S. Turchini, S. Zennaro, and N. Zema, "Electronic and magnetic structures of Sr2FeMOO6."Physical Review Letters, 8709, 9, art. no.-097204 (2001)
    80 J. Linden, T. Yamamoto, M. Karppinen, H. Yamauchi, and T. Pietari, "Evidence for valence fluctuation of Fe in Sr2FeMoO6-w double perovskite."Applied Physics Letters, 76, 20, 2925-2927 (2000)
    81 A. P. Douvalis, M. Venkatesan, J. M. D. Coey, M. Grafoute, J. M. Greneche, and R. Suryanarayanan, "Mossbauer, magnetization and crystal structure studies of the double perovskites Sr2FeMo1-xWxO6, x = 0, 0.1, 0.2, 0.3 and 0.4."Journal of Physics-Condensed Matter, 14, 47, 12611-12627 (2002)
    82 M. Besse, V. Cros, A. Barthelemy, H. Jaffres, J. Vogel, F. Petroff, A. Mirone, A. Tagliaferri, P. Bencok, P. Decorse, P. Berthet, Z. Szotek, W. M. Temmerman, S. S. Dhesi, N. B. Brookes, A. Rogalev, and A. Fert, "Experimental evidence of the ferrimagnetic ground state of Sr2FeMoO6 probed by X-ray magnetic circular dichroism."Europhysics Letters, 60, 4, 608-614 (2002)
    83 K. Kuepper, I. Balasz, H. Hesse, A. Winiarski, K. C. Prince, M. Matteucci, D. Wett, R. Szargan, E. Burzo, and M. Neumann, "Electronic and magnetic properties of highly ordered Sr2FeMoO6."Physica Status Solidi a-Applied Research, 201, 15, 3252-3256 (2004)
    84 J. Navarro, J. Fontcuberta, M. Izquierdo, J. Avila, and M. C. Asensio, "Probing Mo core valence on Sr2FeMoO6 half-metallic ferromagnets and their electron-doped derivative compounds by photoelectron spectroscopy."Physical Review B, 70, 5, (2004)
    85 G. Y. Liu, G. H. Rao, X. M. Feng, H. F. Yang, Z. W. Ouyang, W. F. Liu, and J. K. Liang, "Structural transition and atomic ordering in the non-stoichiometric double perovskite Sr2FexMo2-xO6."Journal of Alloys and Compounds, 353, 1-2, 42-47 (2003)
    86 柯尊發, "巨磁阻Sr2FeMoO6之合成機構、結構及性質之探討."碩士論文, (2002)
    87 D. Briggs and M. P. Seah, "Practical surface analysis ", John Wiley & Sons Ltd, Pages (1990).
    88 M. Raekers, K. Kuepper, H. Hesse, I. Balasz, I. G. Deac, S. Constantinescu, E. Burzo, M. Valeanu, and M. Neumann, "Investigation of chemical and grain boundary effects in highly ordered Sr2FeMoO6: XPS and Mossbauer studies."Journal of Optoelectronics and Advanced Materials, 8, 2, 455-460 (2006)
    89 J. Rager, A. Zipperle, A. Sharma, and J. L. MacManus-Driscoll, "Oxygen stoichiometry in Sr2FeMoO6, the determination of Fe and Mo valence states, and the chemical phase diagram of SrO-Fe3O4-MoO3."Journal of the American Ceramic Society, 87, 7, 1330-1335 (2004)
    90 J. Mizusaki , Y. Mima , S. Yamauchi, K. Fueki , and H. Tagawa "Nonstoichiometry of the Perovskite-Type La1-xSrxCoO3-d."J. Solid State Chem., 80, 102-111 (1989)
    91 J. Hombo, Y. Matsumoto, and T. Kawano, "Electrical Conductivities of Srfeo3-Delta and Bafeo3-Delta Perovskites."Journal of Solid State Chemistry, 84, 1, 138-143 (1990)
    92 Holstein T., Ann. Phys.(N.Y.), 8, 343 (1959)
    93 Emin D. and Holstein T., Ann. Phys.(N.Y.), 53, 439 (1969)

    下載圖示 校內:2007-07-31公開
    校外:2008-07-31公開
    QR CODE