簡易檢索 / 詳目顯示

研究生: 柯旻宗
Ke, Min-Tsung
論文名稱: 探討多元金屬添加到NiFe 雙層氫氧化物中對電催化尿素反應活性的影響以及藉由硫化進一步提高性能
The effect of the metal addition into NiFe LDH on UOR electrocatalytic activity and subsequent Sulfurization for further enhanced performance.
指導教授: 丁志明
Ting, Jyh-Ming
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 91
中文關鍵詞: 層狀雙氫氧化物多元素之硫化物電解尿素分解氧化反應CO2 的催化劑
外文關鍵詞: layer double hydroxides, sulfides, catalyst, urea oxidation, CO2 affinity
相關次數: 點閱:62下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 尿素氧化反應 (UOR) 是決定現代尿素基能量轉換技術性能的基礎反應。這些技術包括用於產氫的電催化和光電化學尿素分解以及作為動力發動機的直接尿素燃料電池。相較於析氧反應(OER)具有很高的過電位,會顯著降低水分解的能量效率,由於尿素氧化反應 (UOR)具有較低的電極電位,所以使用尿素氧化反應(UOR)代替OER是一種可行且節能的方法,因此可以被當作為當前水分解和氫燃料電池系統替代品的巨大潛力,具有更有利的操作條件和成本效益。不過,目前尿素氧化反應 (UOR) 性能主要受限於6電子轉移過程以及受到CO2吸附而阻絕活性位點的問題。因此,透過各種材料設計和合成策略來改善並合成出具有高效率的 UOR 催化劑。
    本研究中,利用添加微量的其他元素並探討各個元素間的交互作用,以NiFe的layer double hydroxide(LDH)為基底,分別加入Ti、V、Zn、Ag、Cr合成三、四元過渡金屬的雙層氫氧化物,採用溶劑熱法合成層狀雙氫氧化物,並透過探討過渡金屬元素之間的協同效應,提升尿素氧化反應 (UOR)的催化活性與穩定性。
    為了再更進一步提升催化的性能,本研究亦利用摻雜多元的陰離子概念,透過進一步將層狀雙氫氧化物進行硫化反應,合成多元素之硫化物。並探討其多元金屬及非金屬之間的調節以及在UOR的催化過程中材料表面形貌及鍵結變化的機制以及CO2的催化劑的影響來達到合成出高效能之分解尿素氧化的電催化劑。

    The commercial catalyst for urea oxidation reaction (UOR) is noble metal-based catalyst such as RuO2. Although noble metal catalysts have impressive UOR activities, their expensive price, scarcity, and poor long-term stability limit the largescale applications. The requirement of synthesizing effective, and stable nonprecious element based UOR catalysts is high. In this study, first we have synthesized multi-element layer double hydroxide(LDH) using facilely one-step solvothermal process. The catalyst of NFTiCr demonstrates ultra-low potential of 1.32V at current density of 10mA cm-2 in alkaline solution and also much improves the durability. In order to further enhance the electrocatalytic performance, Sulfurization was used to synthesize pure phase multi-element sulfides. NFTiS with higher CO2 affinity exhibits outstanding performance with 1.36V at current density of 100 mA cm-2. These extraordinary UOR performance of the metal-doped LDH and sulfide will have a great opportunity for practical applications.

    摘要 i Extend Abstract ii 致謝 xv 總目錄 xvi 圖目錄 xix 表目錄 xix 第1章 緒論 1 1.1 研究背景 1 1.2 研究目的 2 第2章 文獻回顧 4 2.1 多元素材料 4 2.2 電化學產氫反應 5 2.2.1 電解尿素分解反應 5 2.2.2 陽極反應(UOR) 6 2.2.3 電催化劑材料設計 7 2.2.4 電催化產氫效能評估 9 2.3 過渡金屬電解尿素催化劑 12 2.3.1 摻雜Cr的影響 12 2.3.1 摻雜Zn的影響 13 2.3.2 摻雜Ti、Ag的影響 14 2.4 金屬氫氧化物催化劑 16 2.5 硫化物的電催化劑 18 第3章 實驗方法與分析原理 19 3.1 實驗藥品與材料 19 3.2 實驗流程與步驟 20 3.2.1 氫氧化物製備 20 3.2.2 硫化物製備 22 3.3 工作電極製備 24 3.3.1 泡沫鎳清洗 24 3.3.2 電極製備 24 3.4 分析方法 25 3.4.1 X射線繞射儀(X-ray Diffraction Spectrometer) 25 3.4.2 感應耦合電漿光學發射光譜儀(Inductively Coupled Plasma) 25 3.4.3 場發掃描式電子顯微鏡(Field-Emission Scanning Electron Microscope) 25 3.4.4 穿透式電子顯微鏡(Transmission Electron Microscopy) 26 3.4.5 電化學分析 26 3.4.6 臨場拉曼光譜(In-situ Raman spectroscopy) 27 3.4.7 X射線光電子能譜儀(X-ray Photoelectron Spectroscopy) 27 3.4.8 程序升溫脫附(temperature programmed desorption) 27 第4章 結果與討論 29 4.1 不同元素組合之氫氧化物 29 4.1.1 X光繞射晶體結構分析 29 4.1.2 ICP材料成分分析 30 4.1.3 材料表面形貌與微結構分析 31 4.1.4 電化學分析 34 4.1.5 XPS表面化學組成分析 41 4.1.6 UOR反應後材料表面形貌與微結構 46 4.1.7 UOR反應後之XPS表面化學組成分析 48 4.1.8 臨場(In-situ)拉曼光譜分析 51 4.2 不同元素組合之硫化物 55 4.2.1 X光繞射晶體結構分析 55 4.2.2 ICP材料成分分析 55 4.2.3 材料表面形貌與微結構分析 56 4.2.4 電化學分析 59 4.2.5 XPS表面化學組成分析 67 4.2.1 程序升溫脫附(TPD)分析 75 4.2.2 UOR反應後材料表面形貌與微結構 76 4.2.3 UOR反應後之XPS表面化學組成分析 78 4.2.4 臨場(In-situ)拉曼光譜分析 81 第5章 結論 85 第6章 參考文獻 86

    1. Ding, Y., X. Du, and X. Zhang, Rose-like Cu-doped Ni3S2 nanoflowers decorated with thin NiFe LDH nanosheets for high-efficiency overall water and urea electrolysis. Applied Surface Science, 2022. 584: p. 152622.
    2. Miracle, D., High entropy alloys as a bold step forward in alloy development. Nature communications, 2019. 10(1): p. 1-3.
    3. Zhu, W., et al., Wet-chemistry topotactic synthesis of bimetallic iron–nickel sulfide nanoarrays: an advanced and versatile catalyst for energy efficient overall water and urea electrolysis. Journal of Materials Chemistry A, 2018. 6(10): p. 4346-4353.
    4. Zhu, B., Z. Liang, and R. Zou, Designing Advanced Catalysts for Energy Conversion Based on Urea Oxidation Reaction. Small, 2020. 16(7): p. e1906133.
    5. Sun, X. and R. Ding, Recent progress with electrocatalysts for urea electrolysis in alkaline media for energy-saving hydrogen production. Catalysis Science & Technology, 2020. 10(6): p. 1567-1581.
    6. Lin, R., et al., Identification and manipulation of dynamic active site deficiency-induced competing reactions in electrocatalytic oxidation processes. Energy & Environmental Science, 2022.
    7. Zhang, Q., et al., Nitrogen dopants in nickel nanoparticles embedded carbon nanotubes promote overall urea oxidation. Applied Catalysis B: Environmental, 2021. 280.
    8. Marshall, A.T. and R.G. Haverkamp, Electrocatalytic activity of IrO2–RuO2 supported on Sb-doped SnO2 nanoparticles. Electrochimica Acta, 2010. 55(6): p. 1978-1984.
    9. Tsai, F.-T., et al., The HER/OER mechanistic study of an FeCoNi-based electrocatalyst for alkaline water splitting. Journal of Materials Chemistry A, 2020. 8(19): p. 9939-9950.
    10. Chaudhari, N.K., et al., Nanostructured materials on 3D nickel foam as electrocatalysts for water splitting. Nanoscale, 2017. 9(34): p. 12231-12247.
    11. Ma, T.Y., S. Dai, and S.Z. Qiao, Self-supported electrocatalysts for advanced energy conversion processes. Materials Today, 2016. 19(5): p. 265-273.
    12. Hunter, B.M., H.B. Gray, and A.M. Muller, Earth-abundant heterogeneous water oxidation catalysts. Chemical reviews, 2016. 116(22): p. 14120-14136.
    13. Vidotti, M., et al., Electrocatalytic oxidation of urea by nanostructured nickel/cobalt hydroxide electrodes. Electrochimica Acta, 2008. 53(11): p. 4030-4034.
    14. Yan, W., D. Wang, and G.G. Botte, Nickel and cobalt bimetallic hydroxide catalysts for urea electro-oxidation. Electrochimica Acta, 2012. 61: p. 25-30.
    15. Kim, J.-W. and S.-M. Park, In situ XANES studies of electrodeposited nickel oxide films with metal additives for the electro-oxidation of ethanol. Journal of the Electrochemical Society, 2003. 150(11): p. E560.
    16. <Understanding the electro-catalytic oxidation mechanism of urea on nickel electrodes in alkaline medium.pdf>.
    17. Mohamed, I.M. and C. Liu, Chemical design of novel electrospun CoNi/Cr nanoparticles encapsulated in C-nanofibers as highly efficient material for urea oxidation in alkaline media. Applied Surface Science, 2019. 475: p. 532-541.
    18. Liu, Q., et al., A Zn-doped Ni 3 S 2 nanosheet array as a high-performance electrochemical water oxidation catalyst in alkaline solution. Chemical communications, 2017. 53(92): p. 12446-12449.
    19. Han, J., et al., Zn doped FeCo layered double hydroxide nanoneedle arrays with partial amorphous phase for efficient oxygen evolution reaction. ACS Sustainable Chemistry & Engineering, 2019. 7(15): p. 13105-13114.
    20. Lim, S.Y., et al., Chemically Deposited Amorphous Zn-Doped NiFeO x H y for Enhanced Water Oxidation. ACS Catalysis, 2019. 10(1): p. 235-244.
    21. Chakraborty, B., et al., Improved chemical water oxidation with Zn in the tetrahedral site of spinel-type ZnCo2O4 nanostructure. Materials Today Chemistry, 2020. 15: p. 100226.
    22. Menezes, P.W., et al., Uncovering the prominent role of metal ions in octahedral versus tetrahedral sites of cobalt–zinc oxide catalysts for efficient oxidation of water. Journal of Materials Chemistry A, 2016. 4(25): p. 10014-10022.
    23. Wang, Y.-l., et al., Synergistic zinc doping and defect engineering toward MoS 2 nanosheet arrays for highly efficient electrocatalytic hydrogen evolution. Dalton Transactions, 2021. 50(17): p. 5770-5775.
    24. Zhao, Y., et al., Ultrafine NiO nanosheets stabilized by TiO2 from monolayer NiTi-LDH precursors: an active water oxidation electrocatalyst. Journal of the American Chemical Society, 2016. 138(20): p. 6517-6524.
    25. Lin, C., et al., Surfactant-Free Approach for Engineering an Ultrathin Ti-Doped Ni(OH)2 Nanosheet on Carbon Cloth: Experimental and Theoretical Insight into Boosted Alkaline Water Oxidation Activity. Inorg Chem, 2020. 59(14): p. 10253-10261.
    26. Petrik, N.G. and G.A. Kimmel, Off-normal CO2 desorption from the photooxidation of CO on reduced TiO2 (110). The Journal of Physical Chemistry Letters, 2010. 1(17): p. 2508-2513.
    27. Lai, Q., et al., Catalyst-TiO(OH)2 could drastically reduce the energy consumption of CO2 capture. Nat Commun, 2018. 9(1): p. 2672.
    28. Lin, R., et al., PdAg bimetallic electrocatalyst for highly selective reduction of CO2 with low COOH* formation energy and facile CO desorption. Nano Research, 2019. 12(11): p. 2866-2871.
    29. Vedharathinam, V. and G.G. Botte, Direct evidence of the mechanism for the electro-oxidation of urea on Ni (OH) 2 catalyst in alkaline medium. Electrochimica Acta, 2013. 108: p. 660-665.
    30. Wan, K., et al., Hierarchical porous Ni3S4 with enriched high‐valence Ni sites as a robust electrocatalyst for efficient oxygen evolution reaction. Advanced Functional Materials, 2019. 29(18): p. 1900315.
    31. Huang, J., et al., Identification of key reversible intermediates in self‐reconstructed nickel‐based hybrid electrocatalysts for oxygen evolution. Angewandte Chemie, 2019. 131(48): p. 17619-17625.
    32. Zeng, M., et al., Interlayer effect in NiCo layered double hydroxide for promoted electrocatalytic urea oxidation. ACS Sustainable Chemistry & Engineering, 2019. 7(5): p. 4777-4783.
    33. Gong, M., et al., An advanced Ni–Fe layered double hydroxide electrocatalyst for water oxidation. Journal of the American Chemical Society, 2013. 135(23): p. 8452-8455.
    34. Liang, H., et al., Porous two-dimensional nanosheets converted from layered double hydroxides and their applications in electrocatalytic water splitting. Chemistry of Materials, 2015. 27(16): p. 5702-5711.
    35. Song, F. and X. Hu, Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis. Nature communications, 2014. 5(1): p. 1-9.
    36. Liu, Z., et al., Synthesis, anion exchange, and delamination of Co− Al layered double hydroxide: assembly of the exfoliated nanosheet/polyanion composite films and magneto-optical studies. Journal of the American Chemical Society, 2006. 128(14): p. 4872-4880.
    37. Li, Z., et al., Ordered-vacancy-induced cation intercalation into layered double hydroxides: a general approach for high-performance supercapacitors. Chem, 2018. 4(9): p. 2168-2179.
    38. Wang, Q. and D. O’Hare, Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets. Chemical reviews, 2012. 112(7): p. 4124-4155.
    39. Yu, Z.-Y., et al., Ni–Mo–O nanorod-derived composite catalysts for efficient alkaline water-to-hydrogen conversion via urea electrolysis. Energy & Environmental Science, 2018. 11(7): p. 1890-1897.
    40. Rezaee, S. and S. Shahrokhian, 3D ternary NixCo2-xP/C nanoflower/nanourchin arrays grown on HCNs: a highly efficient bi-functional electrocatalyst for boosting hydrogen production via the urea electro-oxidation reaction. Nanoscale, 2020. 12(30): p. 16123-16135.
    41. Yang, H., et al., In Situ Construction of a Mn2+-Doped Ni3S2 Electrode with Highly Enhanced Urea Oxidation Reaction Performance. ACS Sustainable Chemistry & Engineering, 2020. 8(22): p. 8348-8355.
    42. Li, B.Q., et al., Anionic regulated NiFe (oxy) sulfide electrocatalysts for water oxidation. Small, 2017. 13(25): p. 1700610.
    43. Zhong, M., et al., Synthesis of hierarchical nickel sulfide nanotubes for highly efficient electrocatalytic urea oxidation. Applied Surface Science, 2022. 575: p. 151708.
    44. Gao, M., et al., Sulfate-Functionalized Nickel Hydroxide Nanobelts for Sustained Oxygen Evolution. ACS Applied Materials & Interfaces, 2019. 12(1): p. 443-450.
    45. Yu, L., et al., Ultrafast room-temperature synthesis of porous S-doped Ni/Fe (oxy) hydroxide electrodes for oxygen evolution catalysis in seawater splitting. Energy & Environmental Science, 2020. 13(10): p. 3439-3446.
    46. Alex, C., G. Shukla, and N.S. John, Introduction of surface defects in NiO with effective removal of adsorbed catalyst poisons for improved electrochemical urea oxidation. Electrochimica Acta, 2021. 385: p. 138425.
    47. Sivanantham, A., et al., Surface activation and reconstruction of non-oxide-based catalysts through in situ electrochemical tuning for oxygen evolution reactions in alkaline media. ACS Catalysis, 2019. 10(1): p. 463-493.
    48. Ting, N.-H., et al., Composition-controlled high entropy metal glycerate as high-performance electrocatalyst for oxygen evolution reaction. Applied Materials Today, 2022. 27: p. 101398.
    49. Zhong, H., et al., Template-free synthesis of three-dimensional NiFe-LDH hollow microsphere with enhanced OER performance in alkaline media. Journal of energy chemistry, 2019. 33: p. 130-137.
    50. Wang, Y., et al., Tuning surface electronic configuration of NiFe LDHs nanosheets by introducing cation vacancies (Fe or Ni) as highly efficient electrocatalysts for oxygen evolution reaction. Small, 2018. 14(17): p. 1800136.
    51. Deng, X., et al., In situ observation of water dissociation with lattice incorporation at FeO particle edges using scanning tunneling microscopy and X-ray photoelectron spectroscopy. Langmuir, 2011. 27(6): p. 2146-2149.
    52. Zhang, D., et al., Highly active hollow mesoporous NiFeCr hydroxide as an electrode material for the oxygen evolution reaction and a redox capacitor. Chemical Communications, 2020. 56(99): p. 15549-15552.
    53. Wang, Z., et al., Cr-doped CoFe layered double hydroxides: Highly efficient and robust bifunctional electrocatalyst for the oxidation of water and urea. Applied Catalysis B: Environmental, 2020. 272.
    54. Shao, M., et al., The synthesis of hierarchical Zn–Ti layered double hydroxide for efficient visible-light photocatalysis. Chemical Engineering Journal, 2011. 168(2): p. 519-524.
    55. Yang, H., et al., Microwave hydrothermal synthesis of SbVO4 nanospheres as anode materials for sodium ion batteries. Ionics, 2020. 26(3): p. 1267-1273.
    56. Fan, K., et al., Nickel–vanadium monolayer double hydroxide for efficient electrochemical water oxidation. Nature communications, 2016. 7(1): p. 1-9.
    57. Du, Y., et al., Sandwich-like Ni-Zn hydroxide nanosheets vertically aligned on reduced graphene oxide via MOF templates towards boosting supercapacitive performance. Chemical Engineering Journal, 2021. 417: p. 129189.
    58. Bao, F., et al., Facile preparation of Ag/Ni (OH) 2 composites with enhanced catalytic activity for reduction of 4-nitrophenol. RSC advances, 2017. 7(23): p. 14283-14289.
    59. Mao, Y., et al., Hierarchical core-shell Ag@ Ni (OH) 2@ PPy nanowire electrode for ultrahigh energy density asymmetric supercapacitor. Chemical Engineering Journal, 2021. 405: p. 126984.
    60. Nguyen, T.X., et al., A new high entropy glycerate for high performance oxygen evolution reaction. Advanced Science, 2021. 8(6): p. 2002446.
    61. Sunding, M., et al., XPS characterisation of in situ treated lanthanum oxide and hydroxide using tailored charge referencing and peak fitting procedures. Journal of Electron Spectroscopy and Related Phenomena, 2011. 184(7): p. 399-409.
    62. Dupin, J.-C., et al., Systematic XPS studies of metal oxides, hydroxides and peroxides. Physical Chemistry Chemical Physics, 2000. 2(6): p. 1319-1324.
    63. Sari, F.N.I., et al., V-doped, divacancy-containing β-FeOOH electrocatalyst for high performance oxygen evolution reaction. Chemical Engineering Journal, 2022. 438: p. 135515.
    64. Raja, D.S., et al., Composition-balanced trimetallic MOFs as ultra-efficient electrocatalysts for oxygen evolution reaction at high current densities. Applied Catalysis B: Environmental, 2020. 279: p. 119375.
    65. <Adv Funct Materials - 2021 - Nguyen - Self‐Reconstruction of Sulfate‐Containing High Entropy Sulfide for Exceptionally.pdf>.
    66. Lai, W., et al., A NiMoS flower-like structure with self-assembled nanosheets as high-performance hydrodesulfurization catalysts. Nanoscale, 2016. 8(6): p. 3823-3833.
    67. Jiang, J., et al., Ternary FeNiS2 ultrathin nanosheets as an electrocatalyst for both oxygen evolution and reduction reactions. Nano Energy, 2016. 27: p. 526-534.
    68. Gonbeau, D., et al., XPS study of thin films of titanium oxysulfides. Surface Science, 1991. 254(1-3): p. 81-89.
    69. Moreau, P., et al., Electronic structures and charge transfer in lithium and mercury intercalated titanium disulfides. Journal of Physics and Chemistry of Solids, 1996. 57(6-8): p. 1117-1122.
    70. Rout, C.S., et al., Synthesis and characterization of patronite form of vanadium sulfide on graphitic layer. Journal of the American Chemical Society, 2013. 135(23): p. 8720-8725.
    71. Liu, B., et al., Preparation of ZnS@ In2S3 Core@ shell composite for enhanced photocatalytic degradation of gaseous o-dichlorobenzene under visible light. Scientific reports, 2017. 7(1): p. 1-9.
    72. Krylova, V. and N. Dukštienė, Deposition and characterization of silver sulfide layers on the polypropylene film surface. chemija, 2013. 24(3): p. 203-209.
    73. Fang, L., et al., Specific synthesis of CoS 2 nanoparticles embedded in porous Al 2 O 3 nanosheets for efficient hydrogen evolution and enhanced lithium storage. Journal of Materials Chemistry A, 2017. 5(6): p. 2861-2869.
    74. Hammad, A.H., Z.S. ElMandouh, and H.A. Elmeleegi, Structure and Some Physical Properties of Chemically Deposited Nickel Sulfide Thin Films. Acta Physica Polonica A, 2015. 127(4): p. 901-903.
    75. Cheng, Z., H. Abernathy, and M. Liu, Raman spectroscopy of nickel sulfide Ni3S2. The Journal of Physical Chemistry C, 2007. 111(49): p. 17997-18000.

    無法下載圖示 校內:2027-08-25公開
    校外:2027-08-25公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE