| 研究生: |
葉定彰 Yeh, Ting-Chang |
|---|---|
| 論文名稱: |
含二價鋅,鈷,鎳及有機三羧酸根之配位高分子的水熱合成和結構鑑定 Hydrothermal Synthesis and Structural Characterization of Coordination Polymers Containing Zn(II), Co(II), Ni(II) and Organic Tricarboxylates |
| 指導教授: |
許拱北
Shiu, Kom-Bei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 155 |
| 中文關鍵詞: | 配位高分子 、水熱法 、溶劑熱法 、吡啶-2,4,6-三羧酸 |
| 外文關鍵詞: | coordination polymer, hydrothermal method, solvothermal method, pyridine-2,4,6-tricarboxylic acid |
| 相關次數: | 點閱:61 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
利用水熱法及溶劑熱法,將吡啶-2,4,6-三羧酸(Pyridine-2,4,6-tricarboxylic acid, H3PTC)與二價的鋅、鈷、鎳以水或水與乙醇以適當比例當作溶劑進行反應合成,藉由調控不同的反應溫度以及時間合成出五種晶體,並經由元素分析、FT-IR吸收光譜儀、X-ray單晶繞射儀解析得到五種配位高分子的結構,此五種結構分別是[Zn7(μ4-O) (μ-OH)3(PTC)3]n – (1)、{[Ni3(PTC)2(H2O)8].(H2O)4}n – (2)、{[Co3(PTC)2(H2O)8].(H2O)4}n – (3)、{[Co(H2O)6][Co(PTC)(H2O)2]2.(H2O)2}n – (4)
、{[Co(H2O)6][Co(PTC)(H2O)]2}n – (5),其中化合物1具有三維的結構,化合物2及化合物3是二維的結構並互為等結構,化合物4和化合物5為一維的結構,且化合物1、化合物2、化合物3、化合物5為新的結構,並藉由熱重分析及FT-IR吸收光譜儀探討其熱穩定性及配位水和結晶水離去的溫度,可以知道其分解溫度均大於350 ℃,具有相當良好的熱穩定性。
Hydrothermal Synthesis and Structural Characterization of Coordination Polymers Containing Zn(II), Co(II), Ni(II) and Organic Tricarboxylates
Ting-Chang Yeh
Kom-Bei Shiu
Department of Chemistry, National Cheng-Kung University
SUMMARY
Utilizing hydrothermal and solvothermal method to synthesize five coordination polymers from Metal salt [Zn(II), Co(II), Ni(II)] and pyridine-2,4,6-tricarboxylic acid.All coordination polymers were characterizes by elemental analysis, fourier transform infrared spectroscopy, thermogravimetry analysis, powder X-ray diffraction and single-crystal diffractometer.Single crystal structure of each coordination polymer were determined by single diffraction data.
Key words : coordination polymer, hydrothermal method, solvothermal method, pyridine-2,4,6-tricarboxylic acid
INTRODUCTION
Products that obtained from the combination of metal salts [M = Zn(II), Co(II), Ni(II)] and pyridine-2,4,6- tricarboxylic acid are coordination polymers. By controlling temperature and reaction time I synthesize five novel coordination polymers via hydrothermal and solvothermal method. They are [Zn7(μ4-O) (μ-OH)3(PTC)3]n – (1), {[Ni3(PTC)2(H2O)8].(H2O)4}n – (2), {[Co3(PTC)2(H2O)8].(H2O)4}n – (3), {[Co(H2O)6][Co(PTC)(H2O)2]2.(H2O)2}n – (4), {[Co(H2O)6][Co(PTC)(H2O)]2}n – (5).
MATERIALS AND METHODS
Pyridine-2,4,6- tricarboxylic acid is synthesized from 2,4,6- trimethylpyridine and potassium permanganate in aqueous solution. Using hydrothermal program oven heating rate is different condition from room temperature to reaction temperature and slowly cooling rate from reaction temperature to room temperature. The reaction temperature and reaction time of compound 1 are 190 °C and 72 hr, compound 2 are 130 °C and 48 hr, compound 3 are 120 °C and 48 hr, compound 4 are 120 °C and 48 hr, compound 5 are 130 °C and 72 hr.
RESULTS AND DISCUSSION
The structrural dimension and metal coordination mode of five compounds are summarized in Table 1 {[Zn7(μ4-O) (μ-OH)3(PTC)3]n – (1), {[Ni3(PTC)2(H2O)8].(H2O)4}n – (2), {[Co3(PTC)2(H2O)8].(H2O)4}n – (3), {[Co(H2O)6][Co(PTC)(H2O)2]2.(H2O)2}n – (4), {[Co(H2O)6][Co(PTC)(H2O)]2}n – (5)}. And all of compounds have good thermal stability.
Table 1. Coordination polymers
Compound (1) (2) (3) (4) (5)
Dimension 3 2 2 1 1
M1(M=Zn, Co, Ni) 4 6 6 7 6
M2(M=Zn, Co, Ni) 5 6 6 6 6
M3(M=Zn, Co, Ni) 4 - - - 6
Thermal stability(℃) 455 377 389 389 -
CONLUSION
Utilize hydrothermal and solvothermal method to synthesize five coordination polymers from metal salts and H3PTC. Compound 1 is 3D structure, Compound 2, 3 are 2D structures, Compound 4, 5 are 1D structures. Compound 1, 2, 3, 5 are new coordination polymer structures and compound 2, 3 are isostructural. And all of compounds have good thermal stability.
1. Russell, V. A.; Evans, C. C.; Li, W.; Ward, M. D., Science 1997, 276, 575-579.
2. Ranganathan, A.; Pedireddi, V. R.; Rao, C. N. R., J. Am. Chem. Soc. 1999, 121, 1752-1753.
3. Biradha, K.; Seward, C.; Zaworotko, M. J., Angew. Chem., Int. Ed 1999, 38, 492-495.
4. Yaghi, O. M.; Li, H., J. Am. Chem. Soc. 1996, 118, 295-296.
5. Gudbjartson, H.; Biradha, K.; Poirier, K. M.; Zaworotko, M. J., J. Am. Chem. Soc. 1999, 121, 2599-2600.
6. Ino, I.; Zhong, J. C.; Munakata, M.; Kuroda-Sowa, T.; Maekawa, M.; Suenaga, Y.; Kitamori, Y., Inorg. Chem. 2000, 39, 4273-4279.
7. Kondo, M.; Shimamura, M.; Noro, S.; Minakoshi, S.; Asami, A. S., K.; Kitagawa, S., Chem. Mater. 2000, 12, 1288-1299.
8. Hagrmann, D.; Hammond, R. P.; Haushalter, R.; Zubieta, J., Chem. Mater. 1998, 10, 2091-2100.
9. Yaghi, O. M.; Li, H., J. Am. Chem. Soc. 1995, 117, 10401-10402.
10. Carlucci, L.; Ciani, G.; Proserpio, D. M.; Sironi, A., Chem. Commun. 1994, 2775-2756.
11. Kitagawa, S.; Kitaura, R.; Noro, S.-i., Angew. Chem. Int. Ed. 2004, 43, 2334-2375.
12. Seo, J. S.; Whang, D.; Lee, H.; Jun, S. I.; Oh, J.; Jeon, Y. J.; Kim, K., Nature 2000, 404, 982-986.
13. Cho, S.-H.; Ma, B.; Nguyen, S. T.; Hupp, J. T.; Albrecht-Schmitt, T. E., Chem. Commun. 2006, 2563-2565.
14. Phan, A.; Czaja, A. U.; Gándara, F.; Knobler, C. B.; Yaghi, O. M., Inorg. Chem. 2011, 50, 7388-7390.
15. Srikanth, H.; Hajndl, R.; Moulton, B.; Zaworotko, a. M. J., J. Appl. Phys. 2003, 93, 7089-7091.
16. Talin, A. A.; Centrone, A.; Ford, A. C.; Foster, M. E.; Stavila, V.; Haney, P.; Kinney, R. A.; Szalai, V.; El Gabaly, F.; Yoon, H. P.; Léonard, F.; Allendorf, M. D., Science 2014, 343, 66-69.
17. Sheberla, D.; Sun, L.; Blood-Forsythe, M. A.; Er, S.; Wade, C. R.; Brozek, C. K.; Aspuru-Guzik, A.; Dincă, M., J. Am. Chem. Soc. 2014, 136, 8859-8862.
18. Hu, Z.; Pramanik, S.; Tan, K.; Zheng, C.; Liu, W.; Zhang, X.; Chabal, Y. J.; Li, J., Cryst. Growth Des. 2013, 13, 4204-4207.
19. Drobek, M.; Kim, J.-H.; Bechelany, M.; Vallicari, C.; Julbe, A.; Kim, S. S., ACS Appl. Mater. Interfaces 2016, 8, 8323-8328.
20. Mao, Y.; shi, L.; Huang, H.; Cao, W.; Li, J.; Sun, L.; Jin, X.; Peng, X., Chem. Commun. 2013, 49, 5666-5668.
21. Rodenas, T.; Luz, I.; Prieto, G.; Seoane, B.; Miro, H.; Corma, A.; Kapteijn, F.; Llabrés i Xamena, F. X.; Gascon, J., Nat. Mater. 2015, 14, 48-55.
22. Choi, S.; Drese, J. H.; Jones, C. W., ChemSusChem 2009, 2, 796-854.
23. Gándara, F.; Furukawa, H.; Lee, S.; Yaghi, O. M., J. Am. Chem. Soc. 2014, 136, 5271-5274.
24. Spanopoulos, I.; Tsangarakis, C.; Klontzas, E.; Tylianakis, E.; Froudakis, G.; Adil, K.; Belmabkhout, Y.; Eddaoudi, M.; Trikalitis, P. N., J. Am. Chem. Soc. 2016, 138, 1568-1574.
25. Li, Y.; Yang, R. T., Langmuir 2007, 23, 12937-12944.
26. Alezi, D.; Belmabkhout, Y.; Suyetin, M.; Bhatt, P. M.; Weseliński, Ł. J.; Solovyeva, V.; Adil, K.; Spanopoulos, I.; Trikalitis, P. N.; Emwas, A.-H.; Eddaoudi, M., J. Am. Chem. Soc. 2015, 137, 13308-13318.
27. Rabenau, A., Angew. Chem. Int. Ed. Engl. 1985, 24, 1026-1040.
28. Chui, S. S. Y.; Lo, S. M. F.; Charmant, J. P. H.; Orpen, A. G.; Williams, I. D., Science 1999, 283, 1148-1150.
29. Zheng, Y.-Q.; Xu, W.; Zhu, H.-L.; Lin, J.-L.; Zhao, L.; Dong, Y.-R., CrystEngComm 2011, 13, 2699-2708.
30. Ghosh, S. K.; Savitha, G.; Bharadwaj, P. K., Inorg. Chem. 2004, 43, 5495-5497.
31. Ghosh, S. K.; El Fallah, M. S.; Ribas, J.; Bharadwaj, P. K., Inorg. Chim. Acta 2006, 359, 468-474.
32. Lin, J.; Wen, L.; Zang, S.; Su, Y.; Lu, Z.; Zhu, H.; Meng, Q., Inorg. Chem. Commun. 2007, 10, 74-76.
33. Peng, M.-X.; Li, C.-J.; Tong, M.-L., Inorg. Chem. Commun. 2008, 11, 707-710.
34. Fang, S.-M.; Sañudo, E. C.; Hu, M.; Zhang, Q.; Ma, S.-T.; Jia, L.-R.; Wang, C.; Tang, J.-Y.; Du, M.; Liu, C.-S., Cryst. Growth Des. 2011, 11, 811-819.
35. Wang, H.; Zhao, X.; Liu, M.; Shi, W.; Cheng, P., Chin. J. Chem. 2012, 30, 2097-2102.
36. Gao, H.-L.; Yi, L.; Ding, B.; Wang, H.-S.; Cheng, P.; Liao, D.-Z.; Yan, S.-P., Inorg. Chem. 2006, 45, 481-483.
37. Sharif, S.; Sahin, O.; Khan, I. U.; Büyükgüngör, O., J. Coord. Chem. 2012, 65, 1892-1904.
38. Ghosh, S. K.; Bharadwaj, P. K., Eur. J. Inorg. Chem. 2005, 2005, 4886-4889.
39. Ren, Y.-Y.; An, B.-L.; Xu, Q., J. Alloys Compd. 2010, 501, 42-46.
40. Wang, H.-S.; Zhao, B.; Zhai, B.; Shi, W.; Cheng, P.; Liao, D.-Z.; Yan, S.-P., Cryst. Growth Des. 2007, 7, 1851-1857.
41. Wang, H.-S.; Li, G.-C.; Chen, Y.; Zhang, Z.-J.; Liu, M.-L., J. Coord. Chem. 2010, 63, 4068-4076.
42. Zhang, W.-z.; Lv, T.-y.; Wei, D.-z.; Xu, R.; Xiong, G.; Wang, Y.-q.; Gao, E.-j.; Sun, Y.-g., Inorg. Chem. Commun. 2011, 14, 1245-1249.
43. Zhu, H.-L.; Xu, W.; Wang, J.-F.; Zheng, Y.-Q., Synth. Met. 2012, 162, 1327-1334.
44. SYPER, L.; K., K.; J., M., Tetrahedron 1980, 36, 123-129.
45. Gao, H.-L.; Ding, B.; Yi, L.; Cheng, P.; Liao, D.-Z.; Yan, S.-P.; Jiang, Z.-H., Inorg. Chem. Commun. 2005, 8, 151-154.
46. Xiong, G.; Pal, U.; Serrano, J. G.; Ucer, K. B.; Williams, R. T., Phys. Status Solidi C 2006, 3, 3577-3581.
47. Rahdar, A.; Aliahmad, M.; Azizi, Y., J. Nanostruct. 2015, 5, 145-151.
48. Manigandan, R.; Giribabu, K.; Suresh, R.; Vijayalakshmi, L.; A., S.; V., N., Chem. Sci. Trans. 2013, 2, S47-S50.
49. Sharifi, S. L.; Shakur, H. R.; Mirzaei, A.; Hosseini, M. H., Int. J. Nanosci. Nanotechno. 2013, 9, 51-58.
校內:2022-07-01公開