| 研究生: |
陳瑩瑩 Chen, Ying-Ying |
|---|---|
| 論文名稱: |
以表面接枝之磁性奈米團簇修飾金電極用於電化學阻抗式感測血清白蛋白 Fabrication of Au electrode with surface grafted magnetic nanoclusters for the electrochemical impedance detection of serum albumin |
| 指導教授: |
許梅娟
Syu, Mei-Jywan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 66 |
| 中文關鍵詞: | 氧化鐵奈米粒子 、奈米團簇 、修飾電極 、電化學阻抗式 、人體血清白蛋白 |
| 外文關鍵詞: | magnetic nanoclusters, human serum albumin, electrochemical impedance spectroscopy |
| 相關次數: | 點閱:91 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究首先以油相熱烈解法合成疏水性的氧化鐵奈米粒子 (MNP),經由CTAB改質後,可將其轉換為氧化鐵奈米團簇 (MNC)。以AEAPTES修飾後,可成功將其轉換為親水性的奈米粒子 (MNC@AE)。在接枝sulfo-SMCC後,成功賦予其表面馬來醯亞胺基,使其成為可吸附白蛋白的功能性奈米粒子 (MNC@SMCC)。將實驗所得產物進行XRD分析,可知其核心為四氧化三鐵。MNC系列之TEM影像為多顆MNP聚集而成的奈米團簇,具有微胞結構,其由DLS分析所得粒徑因水合作用而與TEM粒徑差距較大。由HRTEM分析可觀察到粒子內部的原子排列,搭載電子選區繞射可得到多個四氧化三鐵之晶面,可與XRD分析相佐證。由FT-IR及XPS分析可觀察到改質及接枝後特定特徵峰的出現及所含元素種類的變化,皆為改質及接枝成功提供了證據。由界面電位分析可知其表面電性隨修飾層增加之改變,原為正電性的MNC經多層修飾後電位逐漸趨於中性。由SQUID分析可知,所合成的氧化鐵奈米團簇在300 K下具有高飽和磁化量及低殘餘磁化量,均為超順磁性。由分光光度計之沉降曲線可知,本實驗之最終產物MNC@SMCC具有良好的親水性及穩定性,可應用於後續之生醫感測。
將MNC@SMCC修飾於金電極可用於白蛋白感測。由循環伏安法及Nyquist分析可知其具有高電化學活性面積及導電性。在生醫感測方面,結合電化學阻抗式分析方法,便可計算阻抗變化率以校正定量白蛋白濃度。修飾電極所能感測白蛋白之線性濃度範圍為1~13 g/dL,此範圍亦涵蓋了正常的人體血清白蛋白濃度。由干擾物測試結果可發現修飾電極對白蛋白具有專一性,即具有高選擇性。其亦具有較佳的穩定性,在室溫下保存30天仍能維持不錯的再現性。以成大醫院林韋伶教授所提供之血清檢體進行白蛋白感測,並計算修飾電極實測值與醫院提供的檢測值,以比較兩者間之吻合度,實測60組的結果顯示修飾電極與醫院檢測值的吻合度為81.8%。此結果顯示本研究已建立可感測血清白蛋白的修飾電極。
Magnetic iron oxide nanomaterials have been widely investigated because of their superparamagnetic property upon being subjected to an external magnetic field. Thermal decomposition was applied to prepare uniformly distributed iron oxide nanoparticles (MNP). Then, iron oxide magnetic nanoclusters (MNC) were then prepared by adding CTAB (cetyltrimethylammonium bromide). Meanwhile, AEAPTES ((3-(2-aminoethyl amino)propyl)triethoxysilane) was also used to tune the hydrophobic surfaces of the nanoclusters into hydrophilic. Afterwards, AEAPTES modified nanoclusters (MNC@ AE) were further conjugated with sulfo-SMCC (sulfo-N-succinimidyl 4-(N-maleimido methyl)cyclohexane-1-carboxylate)). Via which, the as-prepared SMCC conjugated MNCs (MNC@SMCC) were able to capture human serum albumin (HSA). By XRD spectrum, we can know that its core is Fe3O4. We can also find the diameter of MNC series calculated by DLS is much larger than the one calculated by TEM because of hydration reaction. The appearance of the typical peaks and change of chemical elements can be checked by FT-IR and XPS. We can also see the surface charge of MNC series change from positive to neutral by zeta-potential. From M-H curve, we can know all of the particles are superparamagnetic. By UV-vis, we can find the final product MNC@ SMCC has good dispersity in water, which is suitable to be as the material of biomedical detection. The binding as well as detection of different HSA concentrations was performed by electrochemical impedance spectroscopy. The calibration curve of impedance change ratio against albumin concentration shows excellent linearity. Detection of HSA concentration thus becomes feasible by the surface modified MNC@ SMCC coated Au electrode. In this work, we also cooperate with the hospital to test human serum samples and find the modified electrode has the potential for further clinical applications.
1. L Gloag, M Mehdipour, DF Chen, RD Tilley, JJ Gooding. Advances in the application of magnetic nanoparticles for sensing. Advanced Materials 31, 1904385-1904410, 2019.
2. CP Guntlin, ST Ochsenbein, M Wörle, R Erni, KV Kravchyk, MV Kovalenko. Popcorn-shaped FexO (Wüstite) nanoparticles from a single-source precursor: colloidal synthesis and magnetic properties. Chemistry of Materials 30, 1249-1256, 2018.
3. F Bødker, MF Hansen, CB Koch, K Lefmann, S Mørup. Magnetic properties of hematite nanoparticles. Physical Review B 61, 6826-6838, 2000.
4. RL Rebodos, PJ Vikesland. Effects of oxidation on the magnetization of nanoparticulate magnetite. Langmuir 26, 16745-16753, 2010.
5. BA Maher, IAM Ahmed, V Karloukovski, DA MacLaren, PG Foulds, D Allsop, DMA Mann, RT Jardón, LC Garciduenas. Magnetite pollution nanoparticles in the human brain. Proceedings of The National Academy of Sciences of The United States of America 113, 10797-10801, 2016.
6. XL Liu, Y Yang, JP Wu, YF Zhang, HM Fan, J Ding. Novel magnetic vortex nanorings/nanodiscs: synthesis and theranostic applications. Chinese Physics B 24, 127505-127515, 2015.
7. LM Lacroix, D Ho, SH Sun. Magnetic nanoparticles as both imaging probes and therapeutic agents. Catalysis Letters 10, 1184-1197, 2010.
8. JH Lee, JT Jang, JS Choi, SH Moon, SH Noh, JW Kim, JG Kim, IS Kim, KI Park, JW Cheon. Exchange-coupled magnetic nanoparticles for efficient heat induction. Nature Nanotechnology 6, 418-422, 2011.
9. R Massart. Preparation of aqueous magnetic liquids in alkaline and acidic media. IEEE Transactions on Magnetics 17(2), 1247-1248, 1981.
10. SK Suh, K Yuet, DK Hwang, KW Bong, PS Doyle, TA Hatton. Synthesis of nonspherical superparamagnetic particles: in situ coprecipitation of magnetic nanoparticles in microgels prepared by stop-flow lithography. Journal of the American Chemical Society 134, 7337-7343, 2012.
11. J Gautier, E Allard-Vannier, K Hervé-Aubert, M Soucé, I Chourpa. Design strategies of hybrid metallic nanoparticles for theragnostic applications. Nanotechnology 24, 432002-432016, 2013.
12. ZJ Zhou, XL Zhu, DJ Wu, QL Chen, DT Huang, CJ Sun, JY Xin, KY Ni, JH Gao. Anisotropic shaped iron oxide nanostructures: controlled synthesis and proton relaxation shortening effects. Chemistry of Materials 27, 3505-3515, 2015.
13. DD Shao, KK Xu, XJ Song, JH Hu, WL Yang, CC Wang. Effective adsorption and separation of lysozyme with PAA-modified Fe3O4@silica core/shell microspheres. Journal of Colloid and Interface Science 336, 526-532, 2009.
14. D Shao, A Xia, J Hu, C Wang, W Yu. Monodispersed magnetite/silica composite microspheres: preparation and application for plasmid DNA purification. Colloids and Surfaces A: Physicochemical and Engineering Aspects 322, 61-65, 2008.
15. AK Gupta, M Gupta. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26, 3995-4021, 2005.
16. A Tomitaka, JI Jo, I Aoki, Y Tabata. Preparation of biodegradable iron oxide nanoparticles with gelatin for magnetic resonance imaging. Inflammation and Regeneration 34(1), 45-55, 2014.
17. MZ Kassaee, H Masrouri, F Movahedi. Sulfamic acid-functionalized magnetic Fe3O4 nanoparticles as an efficient and reusable catalyst for one-pot synthesis of α-amino nitriles in water. Applied Catalysis A: General 395, 28–33, 2011.
18. U Kurtan, A Baykal, H Sözeri. Synthesis and characterization of sulfamic-acid functionalized magnetic Fe3O4 nanoparticles coated by poly(amidoamine) dendrimer. Journal of Inorganic and Organometallic Polymers and Materials 24, 948-953, 2014.
19. H Naeimi, ZS Nazifi. A highly efficient nano-Fe3O4 encapsulated-silica particles bearing sulfonic acid groups as a solid acid catalyst for synthesis of 1,8-dioxo-octahydroxanthene derivatives. Journal of Nanoparticle Research 15, 20–26, 2013.
20. B Shen, WT Zhai, MM Tao, JQ Ling, WG Zheng. Lightweight, multifunctional polyetherimide/graphene@Fe3O4 composite foams for shielding of electromagnetic pollution. Applied Materials & Interfaces 5, 11383–11391, 2005.
21. H Yu, M Chen, PM Rice, SX Wang, RL White, SH Sun. Dumbbell-like bifunctional Au−Fe3O4 nanoparticles. Nano Letters 5, 379–382, 2005.
22. YH Wei, R Klajn, AO Pinchuk, BA Grzybowski. Synthesis, shape control, and optical properties of hybrid Au/Fe3O4 “nanoflowers”. Small 4, 1635–1639, 2008.
23. YX Li, M Zhang, M Guo, XD Wang. Preparation and properties of a nano TiO2/Fe3O4 composite superparamagnetic photocatalyst. Journal of Physics 28, 423–427, 2009.
24. SW Phang, M Tadokoro, J Watanabe, N Kuramoto. Effect of Fe3O4 and TiO2 addition on the microwave absorption property of polyaniline micro/nanocomposites. Polymers Advanced Technologies 20, 550-557, 2009.
25. D Shao, J Li, X Zheng, Y Pan, Z Wang, M Zhang, QX Chen, WF Dong, L Chen. Janus “nano-bullets” for magnetic targeting liver cancer chemotherapy. Biomaterials 100, 118-133, 2016.
26. JS Choi, JH Lee, TH Shin, HT Song, EY Kim, J Cheon. Self-confirming “And” logic nanoparticles for fault-free MRI. Journal of the American Chemical Society 132, 11015-11017, 2010.
27. TH Shin, JS Choi, S Yun, IS Kim, HT Song, Y Kim. T1 and T2 dual-mode MRI contrast agent for enhancing accuracy by engineered nanomaterials. ACS Nano 8, 3393-3401, 2014.
28. P Miao, YG Tang, L Wang. DNA modified Fe3O4@Au magnetic nanoparticles as selective probes for simultaneous detection of heavy metal ions. ACS Applied Materials & Interfaces 9, 3940-3947, 2017.
29. EPA. Ambient water quality criteria for silver; Environmental Protection Agency, Office of Water: Washington, DC, 1980; EPA 440/5-80-071.
30. EPA. Ambient water quality criteria for mercury; U.S. Environmental Protection Agency, Office of Water: Washington, DC, 1985; EPA 440/5-94-026.
31. M Baghayeri, H Veisi, M Ghanei-Motlagh. Amperometric glucose biosensor based on immobilization of glucoseoxidase on a magnetic glassy carbon electrode modified with a novel magnetic nanocomposite. Sensors and Actuators B: Chemical 249, 321-330, 2017.
32. V Arroyo, R Garcia-Martinez, X Salvatella. Human serum albumin, systemic inflammation, and cirrhosis. Journal of Hepatology 61, 396−407, 2014.
33. MD Litchford. The advanced practitioner's guide to nutrition & wounds. CASE Software 2009.
34. BH Northrop, SH Frayne, U Choudhary. Thiol-maleimide “click” chemistry: evaluating the influence of solvent, initiator, and thiol on the reaction mechanism, kinetics, and selectivity. Polymer Chemistry 6, 3415−3430, 2015.
35. AD Baldwin, KL Kiick. Tunable degradation of maleimide-thiol adducts in reducing environments. Bioconjugate Chemistry 22, 1946−1953, 2011.
36. LS Lu, LS Liang, KS Teh, YX Xie, ZP Wan, Y Tang. The electrochemical behavior of carbon fiber microelectrodes modified with carbon nanotubes using a two-step electroless plating/chemical vapor deposition process. Sensors 17, 725−729, 2017.
37. D Grieshaber, R MacKenzie, J Vörös, E Reimhult. Electrochemical biosensors - sensor principles and architectures. Sensors 8, 1400−1458, 2008.
38. HM Jafari, K Abdelhalim, L Soleymani, EH Sargent, SO Kelley, R Genov. Nanostructured CMOS wireless ultra-wideband label-free PCR-free DNA analysis soc. Journal of Solid-State Circuits 49, 1223−1241, 2014.
39. Á Molina, E Laborda, EI Rogers, F Martínez-Ortiz, C Serna, JG Limon-Petersen, NV Rees, RG Compton. Theoretical and experimental study of differential pulse voltammetry at spherical electrodes: measuring diffusion coefficients and formal potentials. Journal of Electroanalytical Chemistry 634, 73−81, 2009.
40. V Mirceski, R Gulaboski. Recent Achievements in square-wave voltammetry. Macedonian Journal of Chemistry and Chemical Engineering 33, 1−12, 2014.
41. JH Christie, JA Turner, RA Osteryoung. Square wave voltammetry at the dropping mercury electrode: theory. Analytical Chemistry 49, 1899−1903, 1977.
42. WZ Tang, J Wu. Amperometric determination of organophosphorus pesticide by silver electrode using an acetylcholinesterase inhibition method. The Royal Society of Chemistry 6, 924−929, 2014.
43. DR Crow. Principles and applications of electrochemistry. Fourth Ed., CRC Press, 1994.
44. DV Ribeiro, JCC Abrantes. Application of electrochemical impedance spectroscopy (EIS) to monitor the corrosion of reinforced concrete: a new approach. Construction and Building Materials 111, 98−104, 2016.
45. E Barsoukov, JR Macdonald. Impedance spectroscopy: theory, experiment, and applications. Third Ed., John Wiley & Sons, Inc., USA, 2018.
46. 郭蘋萱。多功能性超順磁氧化鐵奈米粒子的製備、鑑定與生醫應用。國立成功大
學化工系碩士學位論文,2016。
47. 陳筑雯。製備超順磁氧化鐵奈米粒應用於人類血清白蛋白之免疫專一性結合與檢測。國立成功大學化工系碩士學位論文,2017。
48. 黃宜茵。以不同的表面修飾氧化鐵奈米粒子用於偵測人類血清白蛋白。國立成功大學化工系碩士學位論文,2018。
49. RJ Yang, CC Tseng, WJ Ju, HL Wang, LM Fu. A rapid paper-based detection system for determination of human serum albumin concentration. Chemical Engineering Journal 352, 241−246, 2018.
50. S Sakamoto, T Komatsu, T Ueno, K Hanaoka, Y Urano. Fluorescence detection of serum albumin with a turnover-based sensor utilizing Kemp elimination reaction. Bioorganic & Medicinal Chemistry Letters 27, 3464−3467, 2017.
51. A Mathaweesansurn, N Maneerat, N Choengchan. A mobile phone-based analyzer for quantitative determination of urinary albumin using self-calibration approach. Sensors and Actuators B: Chemical 242, 476−483, 2017.
52. F Eertmans, V Bogaert, B Puype. Development and validation of a high-performance liquid chromatography (HPLC) method for the determination of human serum albumin (HSA) in medical devices. Analytical Methods 3, 1296−1302, 2011.
53. JF Xia, XY Cao, ZH Wang, M Yang, FF Zhang, B Lu, F Li, YH Li, YZ Xia. Molecularly imprinted electrochemical biosensor based on chitosan/ionic liquid-graphene composites modified electrode for determination of bovine serum albumin. Sensors and Actuators B 225, 305−311, 2016.
54. YH Chuang, YT Chang, KL Liu, HY Chang, TR Yew. Electrical impedimetric biosensors for liver function detection. Biosensors and Bioelectronics 28, 368–372, 2011.
55. AF Ogata, JM Edgar, S Majumdar, JS Briggs, SV Patterson, MX Tan. Virus-enabled biosensor for human serum albumin. Analytical chemistry 89, 1373−1381, 2017.