簡易檢索 / 詳目顯示

研究生: 劉益銓
Liu, Yi-Chuan
論文名稱: 電漿處理對牙科氧化鋯的影響
Effect of Plasma Treatment on Dental Zirconia
指導教授: 莊淑芬
Chuang, Shu-Fen
學位類別: 碩士
Master
系所名稱: 醫學院 - 口腔醫學研究所
Institute of Oral Medicine
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 78
中文關鍵詞: 氧化鋯玻璃陶瓷相轉換電漿處理老化鍵結強度
外文關鍵詞: zirconia, glass ceramic, phase transformation, plasma treatment, aging, bond strength
相關次數: 點閱:111下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 氧化釔四方氧化鋯多晶體已被應用在全瓷冠補綴物當支架材料。玻璃陶瓷搭配氧化鋯的牙科義齒具有很好美觀及功能性,但是氧化鋯與玻璃陶瓷之間時常會有剝離的現象被報導。為了增強氧化鋯與玻璃陶瓷兩者之間鍵結強度,目前常用改善方式是表面進行粗糙化處理。然而氧化鋯接受這樣的的處理後,容易引起T-M相轉換,造成氧化鋯補綴物的生命週期縮短的疑慮。大氣常壓電漿對於表面改質是一種非常經濟的方法,也希望藉由大氣常壓電漿改善氧化鋯的表面親水性,進而提升與玻璃陶瓷之間的鍵結,並探討電漿處理後氧化鋯的在低溫降解狀態的穩定性。
    第一個實驗部分是先探討電漿處理對氧化鋯的物理和機械性質影響。Cercon base® ( DeguDent )製作成氧化鋯試片,接著將分別進行O2、 Ar、and CF4 不同氣體的電漿處理。處理過的氧化鋯分別利用接觸角測試、X-ray繞射、微硬度測試、化學元素分析和電子顯微鏡測量其表面濕潤性、相轉換、機械性質、表面化學組成和表面型態。氧化鋯接受噴砂處理作為對照組。結果顯示,這些大氣電漿處理都能增加表面濕潤性,而電漿處理不會影響微硬度,也不會有明顯的T-M相轉換。相反的,經過噴砂的氧化鋯相轉換較多。在表面型態上,氧氣和氬氣電漿處理後表面產生腐蝕的現象,而四氟化碳電漿處理過後,表面則是會產生一層鋯氧氟化合物的沉積物。
    第二部分實驗是探討氧化鋯經過電漿處理過後與玻璃陶瓷的鍵結強度測試。經過電漿處理過後的氧化鋯盤堆築一層玻璃陶瓷,接著進行剪應力強度測試。為了瞭解老化的影響,有一半的樣品在測試之前,接受冷熱循環。結果顯示氧化鋯經氬氣和四氟化碳電漿處理後,能有效的提升與玻璃陶瓷的黏著。而氧氣電漿處理後鍵結強度降低,且橫切面觀察顯示玻璃陶瓷與氧化鋯介面間氣泡增加。
    第三部分實驗評估表面處理對強度的低溫降解的影響。經電漿與噴砂處理的氧化鋯,利用高溫高壓狀態下加速氧化鋯降解,並觀察老化後的雙軸彎曲強度與相轉換變化。結果發現氧化鋯經噴砂處理過後彎曲強度及相轉換明顯增加,但加速老化後強度大幅降低11.7%。氬氣和四氟化碳電漿處理後,強度及相轉換未明顯增加,但加速老化過後,四氟化碳電漿組別強度僅減弱2%的情形。根據以上結果,氬氣和四氟化碳電漿表面處理,可以用來取代或者是搭配噴砂表面處理提高氧化鋯與玻璃陶瓷的鍵結。

    Yttria tetragonal zirconia polycrystal (Y-TZP) has been introduced as a core material for all-ceramic restorations. The glass ceramic-zirconia structure fulfills the esthetic and functional requirements for dental prostheses, while the chipping of veneering porcelains is frequently reported. To enhance the adhesion of glass ceramic, the common methods are to roughen the zirconia. However, zirconia receiving these treatments is prone to phase transformation and further degradation. Atmospheric pressure plasma (APP) is an economic treatment for surface modification. It is proposed that APP increases the wettability of zirconia to improve the adhesion of the veneering porcelain. The purpose of this study was to evaluate the plasma treatments in both enhancing the stability of zirconia, and improving bond strength between zirconia and veneering ceramics.
    The first experiment was to investigate the effect of plasma treatments on physical and mechanical properties of zirconia. Cercon base® ( DeguDent ) zirconia discs were prepared, and treated by O2, Ar, and CF4 gas plasma, respectively. The surface wettability, phase transformation, mechanical properties, chemical properties, and surface morphology of plasma-treated zirconia were measured by the water contact angle test, XRD, microhardness test, XPS, and SEM, respectively.
    Zirconia receiving sandblasting treatments was used for comparison. For the results, all the APP treatments increased the surface wettability. These plasma treatments did not show altered microhardness, and neither an evident t-m phase transformation. Contrarily, the sandblasted zirconia showed more phase transformation. For the surface morphology, O2 and Ar plasma induced erosive appearance and exposed crystals on zirconia surfaces, while CF4 treatment generated surface depositions.
    The second experiment was to examine the effect of plasma treatment on bond strength of glass ceramics. The treated zirconia discs were layered with veneering porcelain, and subject to the shear bond strength test. To examine the effect of aging, a half of specimens received a thermocycling test before the bond test. Ar and CF4 plasma treatments effectively improved the adhesion of glass ceramics. These two plasma treated groups also revealed less porosity on the interfaces.
    The third experiment was to assess the effects of APP treatments on mechanical strength of zirconia after hydrothermal degradation. The treated zirconia was examined for their phase transformation, and biaxial flexure strength. The results showed that regardless of accelerated aging, the biaxial flexure strength of sandblasting group significantly increased. Both Ar and CF4 plasma maintained the strength after accelerated aging. For the present results, plasma treatment might be an alternative or combining treatment with sandblasting to improve zirconia/porcelain bonding.

    中文摘要 I Abstract III Acknowledgement V LIST OF FIGURES IX LIST OF TABLES XII Chapter 1 Introduction 1 1.1 Overview of Dental Zirconia Materials 1 1.1.1 All Ceramic restorations 1 1.1.2 Introduction to zirconia 6 1.1.3 Zirconia and porcelain bonding 10 1.2 Methods to improve surface treatment of zirconia 12 1.3 Plasma Surface Treatment 15 1.3.1 Plasma introduction 15 1.3.2 Atmospheric pressure plasma 17 1.4 Motivation and study purpose 19 Chapter 2 Materials and Methods 20 2.1 Specimen preparation 20 2.1.1 Materials and equipment 20 2.1.2 Preparation of the core specimens 22 2.1.3 Plasma and sandblasting surface treatment 23 2.2 Investigating the effect of surface properties on zirconia 25 2.2.1 Surface topography & Elemental compositions 26 2.2.2 XPS analysis 26 2.2.3 Wettability 27 2.2.4 XRD analysis 29 2.2.5 Microhardness analysis 30 2.3 Evaluation of shear bond strength 31 2.3.1 Surface roughness 32 2.3.2 Veneer fabrication 33 2.3.3 Thermocyclic 35 2.3.4 Shear bond strength 36 2.3.5 Fracture mode 37 2.3.6 Cross-sectional 38 2.4 Evaluation degradation of pre-treatment zirconia 39 2.4.1 Biaxial flexural test 40 2.4.2 Accelerating degradation of zirconia 41 2.5 Statistics analysis 41 Chapter 3 Result 42 3.1 Investigate of surface properties 42 3.1.1. Thermo shot 42 3.1.2. Surface topography 43 3.1.3. XPS analysis 47 3.1.4. Wettability 51 3.1.5. XRD analysis 52 3.1.6. Microhardness analysis 54 3.1.7 Roughness and surface topography 55 3.2 Evaluation of shear bond strength 56 3.2.1 Shear bond strength 56 3.2.2 Fracture mode 58 3.2.3 Cross-sectional 60 3.3 Evaluation of degradation of pre-treatment zirconia 61 3.3.1 Biaxial flexural test 61 3.3.2 XRD analysis 62 Chapter 4 Discussion 64 4.1 Effect of plasma treatment on surface properties 64 4.2 Evaluation of shear bond strength 69 4.3 Evaluation of degradation of pre-treatment zirconia 72 Chapter 5 Conclusion 74 Reference: 75

    Reference:
    1. Hannink RH, Kelly PM, Muddle BC. Transformation Toughening in Zirconia‐Containing Ceramics. Journal of the American Ceramic Society 2000;83(3):461-487.
    2. Zarone F, Russo S, Sorrentino R. From porcelain-fused-to-metal to zirconia: clinical and experimental considerations. Dent Mater 2011;27(1):83-96.
    3. Piconi C, Maccauro G. Zirconia as a ceramic biomaterial. Biomaterials 1999;20(1):1-25.
    4. 3M Lava All Ceramic System
    5. Kisi EH, Howard CJ. Crystal Structures of Zirconia Phases and their Inter-Relation. Key Engineering Materials 1998;153-154:1-36.
    6. Chevalier J, Cales B, Drouin JM. Low-temperature aging of Y-TZP Ceramic. Journal of the American Ceramic Society 1999;82(8):2150-2154.
    7. Denry I, Kelly JR. State of the art of zirconia for dental applications. Dental materials 2008;24(3):299-307.
    8. Chevalier J. What future for zirconia as a biomaterial? Biomaterials 2006;27(4):535-543.
    9. Zeng K, Oden A, Rowcliffe D. Evaluation of mechanical properties of dental ceramic core materials in combination with porcelains. Int J Prosthodont 1998;11(2):183-189.
    10. Sailer I, Pjetursson BE, Zwahlen M, Hämmerle CH. A systematic review of the survival and complication rates of all‐ceramic and metal–ceramic reconstructions after an observation period of at least 3 years. Part II: fixed dental prostheses. Clinical oral implants research 2007;18(s3):86-96.
    11. Fischer J, Grohmann P, Stawarczyk B. Effect of zirconia surface treatments on the shear strength of zirconia/veneering ceramic composites. Dent Mater J 2008;27(3):448-454.
    12. Zhang Y. Overview: Damage resistance of graded ceramic restorative materials. Journal of the European Ceramic Society 2012;32(11):2623-2632.
    13. Kim HJ, Lim HP, Park YJ, Vang MS. Effect of zirconia surface treatments on the shear bond strength of veneering ceramic. J Prosthet Dent 2011;105(5):315-322.
    14. Sato H, Yamada K, Pezzotti G, Nawa M, Ban S. Mechanical properties of dental zirconia ceramics changed with sandblasting and heat treatment. Dent Mater J 2008;27(3):408-414.
    15. Guazzato M, Quach L, Albakry M, Swain MV. Influence of surface and heat treatments on the flexural strength of Y-TZP dental ceramic. Journal of Dentistry 2005;33(1):9-18.
    16. Deville S, Chevalier J, Gremillard L. Influence of surface finish and residual stresses on the ageing sensitivity of biomedical grade zirconia. Biomaterials 2006;27(10):2186-2192.
    17. Patil R, Subbarao E. Axial thermal expansion of ZrO2 and HfO2 in the range room temperature to 1400DegreesC. Journal of Applied Crystallography 1969;2(6):281-288.
    18. Fischer J, Stawarczyk B. Compatibility of machined Ce-TZP/Al2O3 nanocomposite and a veneering ceramic. Dental materials 2007;23(12):1500-1505.
    19. Saied MA, Lloyd IK, Haller WK, Lawn BR. Joining dental ceramic layers with glass. Dent Mater 2011;27(10):1011-1016.
    20. Oguri T, Tamaki Y, Hotta Y, Miyazaki T. Effects of a convenient silica-coating treatment on shear bond strengths of porcelain veneers on zirconia-based ceramics. Dent Mater J 2012;31(5):788-796.
    21. Queiroz JRC, Benetti P, Massi M, Nogueira L, Della Bona A. Effect of multiple firing and silica deposition on the zirconia-porcelain interfacial bond strength. Dental Materials 2012;28(7):763-768.
    22. Fischer J, Stawarzcyk B, Trottmann A, Hämmerle CH. Impact of thermal misfit on shear strength of veneering ceramic/zirconia composites. Dental Materials 2009;25(4):419-423.
    23. Liu D, Matinlinna JP, Tsoi JK, Pow EH, Miyazaki T, Shibata Y, et al. A new modified laser pretreatment for porcelain zirconia bonding. Dent Mater 2013;29(5):559-565.
    24. Aboushelib MN, Kleverlaan CJ, Feilzer AJ. Microtensile bond strength of different components of core veneered all-ceramic restorations. Part II: Zirconia veneering ceramics. Dent Mater 2006;22(9):857-863.
    25. Fischer J, Stawarczyk B, Sailer I, Hammerle CHF. Shear Bond Strength between Veneering Ceramics and Ceria-Stabilized Zirconia/Alumina. Journal of Prosthetic Dentistry 2010;103(5):267-274.
    26. Stoffels E, Flikweert AJ, Stoffels WW, Kroesen GMW. Plasma needle: A non-destructive atmospheric plasma source for fine surface. Plasma Sources Science and Technology 2002;11(4):383-388.
    27. Silva NRFA, Coelho PG, Valverde GB, Becker K, Ihrke R, Quade A, et al. Surface characterization of Ti and Y-TZP following non-thermal plasma exposure. Journal of Biomedical Materials Research Part B-Applied Biomaterials 2011;99B(1):199-206.
    28. Piascik JR, Wolter SD, Stoner BR. Enhanced bonding between YSZ surfaces using a gas‐phase fluorination pretreatment. Journal of Biomedical Materials Research Part B: Applied Biomaterials 2011;98(1):114-119.
    29. Amadori S, Bonetti E, Campari EG, Cappelloni I, Montanari R. Anelastic phenomena associated to water loss and collagen degradation in human dentin. Mat Sci Eng C-Mater 2013;33(3):1455-1459.
    30. Ozkurt Z, Kazazoglu E, Unal A. In vitro evaluation of shear bond strength of veneering ceramics to zirconia. Dent Mater J 2010;29(2):138-146.
    31. Taffner U, Carle V, Schafer U. Preparation and microstructural analysis of high-performance ceramics. Materials Park, OH: ASM International, 2004. 2004:1057-1066.
    32. Garvie RC. PHASE ANALYSIS IN ZIRCONIA SYSTEMS. Journal of the American Ceramic Society 1972;55(6):303-&.
    33. Han Y, Yan YY, Lu CG. Ultraviolet-enhanced bioactivity of ZrO2 films prepared by micro-arc oxidation. Thin Solid Films 2009;517(5):1577-1581.
    34. Chu PK, Chen J, Wang L, Huang N. Plasma-surface modification of biomaterials. Materials Science and Engineering: R: Reports 2002;36(5):143-206.
    35. Fridman A. Plasma chemistry. Cambridge University Press; 2008.
    36. PANTANO CG, BROW RK. Hydrolysis reactions at the surface of fluorozirconate glass. Journal of the American Ceramic Society 1988;71(7):577-581.
    37. Wang H, Aboushelib MN, Feilzer AJ. Strength influencing variables on CAD/CAM zirconia frameworks. Dental materials 2008;24(5):633-638.
    38. Liu D, Matinlinna JP, Pow EH. Insights into porcelain to zirconia bonding. Journal of Adhesion Science and Technology 2012;26(8-9):1249-1265.
    39. Kosmač T, Oblak C, Jevnikar P, Funduk N, Marion L. The effect of surface grinding and sandblasting on flexural strength and reliability of Y-TZP zirconia ceramic. Dental Materials 1999;15(6):426-433.
    40. Karakoca S, Yılmaz H. Influence of surface treatments on surface roughness, phase transformation, and biaxial flexural strength of Y‐TZP ceramics. Journal of Biomedical Materials Research Part B: Applied Biomaterials 2009;91(2):930-937.
    41. Zhang Y, Lawn BR, Rekow ED, Thompson VP. Effect of sandblasting on the long‐term performance of dental ceramics. Journal of Biomedical Materials Research Part B: Applied Biomaterials 2004;71(2):381-386.
    42. Kosmac T, Oblak C, Jevnikar P, Funduk N, Marion L. Strength and reliability of surface treated Y-TZP dental ceramics. Journal of biomedical materials research 2000;53(4):304-313.
    43. Curtis AR, Wright AJ, Fleming GJ. The influence of surface modification techniques on the performance of a Y-TZP dental ceramic. Journal of dentistry 2006;34(3):195-206.
    44. Chintapalli RK, Marro FG, Jimenez-Pique E, Anglada M. Phase transformation and subsurface damage in 3Y-TZP after sandblasting. Dental Materials 2013.
    45. Peterson I, Pajares A, Lawn B, Thompson V, Rekow E. Mechanical characterization of dental ceramics by Hertzian contacts. Journal of dental research 1998;77(4):589-602.
    46. Ban S. Reliability and properties of core materials for all-ceramic dental restorations. Japanese Dental Science Review 2008;44(1):3-21.
    47. Kosmač T, Dakskobler A, Oblak Č, Jevnikar P. The Strength and Hydrothermal Stability of Y‐TZP Ceramics for Dental Applications. International journal of applied ceramic technology 2007;4(2):164-174.

    下載圖示 校內:2023-01-01公開
    校外:2023-01-01公開
    QR CODE