簡易檢索 / 詳目顯示

研究生: 李士勤
Lee, Shih-Chin
論文名稱: 矽鍺多層高平面通道摻雜P型場效電晶體
Multi-Delta-Doped SiGe Channel p-MESFET
指導教授: 吳三連
Wu, San-Lein
張守進
Chang, Shoou-Jinn
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2002
畢業學年度: 90
語文別: 英文
論文頁數: 83
中文關鍵詞: 通道摻雜場效電晶體矽鍺
外文關鍵詞: SiGe, Channel-Doped, FET
相關次數: 點閱:145下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    本論文中,我們利用低溫( 550℃)固體源分子束磊晶法(Solid Source Molecular Beam Epitaxy),成長一系列矽鍺多層高平面通道摻雜P型場效電晶體(Multi-Delta-Doped SiGe Channel p-MESFET)結構,並針對各種結構進行元件製作以及能帶工程理論模擬分析。
    我們使用MEDICI二維模擬軟體,模擬不同元件結構的能帶圖與電洞載子分佈圖。在實驗製作方面,我們成功研製出一系列矽鍺多層高平面通道摻雜P型場效電晶體(Multi-Delta-Doped SiGe Channel p-MESFET)。由於結構之優越性,三通道高平面對稱式摻雜場效電晶體(Symmetrical TDFET )具有最高的互導值(17.3 mS/mm),較大的汲極驅動電流(57 mA/mm),以及較寬的閘極工作平台(4V),顯示此結構具有優越之載子侷限能力。此外由於未摻雜層存在於通道與閘極間,因此元件具有高順向開啟電壓(Turn-on Voltage)和反向崩潰電壓(Reverse Breakdown Voltage)。

    Abstract
    In this thesis, we cooperated with Research Center for Advanced Science and Technology (RCAST), the University of Tokyo. A series of Multi-Delta-Doped SiGe Channel p-MESFET were grown by Solid-Source Molecular Beam Epitaxy (SSMBE) at low temperature (550℃). Delta doping was obtained by evaporating boron from a pure B source in a resistance heated Knudsen cell with the Si and Ge shutters closed.
    We adopt 2D MEDICI tool to simulate the energy band diagram and hole concentration distribution. With the results of device simulation, we could obtain a better understanding of device behaviors. A series of Doped SiGe Channel p-MESFETs, including UFET, SDFET, DDFET, and TDFET, were sucessfully fabricated. From the experimental results, Symmetrical TDFET device demonstrates the best DC performances among all structures. The peak gm was 17.3 mS/mm. The maximum value of drain to source saturation current is about 57 mA/mm. A broad linear gm region versus input bias swing was 4 V.

    Abstract (Chinese) i Abstract (English) ii Acknowledgements iii Contents iv Table Captions vi Figure Captions vii Chapter 1 Introduction 1.1 Motivations 1 1.2 Organization 4 References 5 Chapter 2 Characteristics of Si1-xGex Heterostructures 9 2.1 The comparisons of distinct doped profile SiGe structures 9 2.2 Properties of Si/Si1-xGex Epitaxial Layer 10 2.3 Band Diagram of Sil-XGeX 11 2.3.1 Bandgap 11 2.3.2 Band alignment 12 2.4 Transport Properties of Strained Si1-xGex 13 2.5 The Growth Techniques of SiGe Strained Layers 14 References 33 Chapter 3 Fabrication of Multi-Delta-Doped SiGe Channel p-MESFET 35 3.1 Mesa Isolation 36 3.2 Ohmic Contact 37 3.3 Schottky Contact 39 Chapter 4 Characteristics of P-type SiGe-based Channel-Doped Field Effect Transistors 44 4-1 Gate-Source Schottky Diode Characteristics 44 4-2 Band Diagram and Hole Distribution of P-type SiGe-based Channel-Doped Heterostructure 46 4-3 The Experimental of P-type SiGe-based Channel-Doped Field Effect Transistors 47 References 74 Chapter 5 Conclusions 76 Chapter 6 Future Study 81 References 83

    [1.1]Yi-Jen Chan, and Dimitris Pavlidis, “Single and Dual P-Doped Channel In0.52Al0.48As/InxGa1-xAs (x=0.53,0.65) FET’s and the Role of Doping,” IEEE TRANSACTIONS ON ELECTRON DEVICES,VOL.39, NO.3.MARCH 1992.
    [1.2]S.C.Yang, and S.C.Chiol, Yi-Jen Chan, H.H. Lin “Selectively Dry-Etched In0.49Ga0.51P/In0.15Ga0.85As double-doped channel FETs using CHF3+BCl3 Plasma,” IEEE 2000.
    [1.3]Feng-Tso Chien, and Yi-Jen Chan, “ Improved Voltage Gain of Transimpedance Amplifier by AlGaAs/InGaAS Doped Channel FET’s” IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 46, NO. 6, JUNE 1999
    [1.4]Y.J.Chan, T.J.Yeh, and J.M. Kuo, “In0.49Ga0.51P/In0.15Ga0.85As hetrostructure pulsed doped-channel FETs,” ELECTRONICS LETTERS June, VOL.30, 1994.
    [1.5]Ming-Jer Kao, Hir-Ming Shieh, Wei-Chou Hsu, Tie-Yih Lin, “Investigation of Electron Transfer Characteristics in Multi-δ-Doped GaAs FET’s,” IEEE, VOL.43, NO. 8, AUGUST 1996.
    [1.6]WON-PYO HONG, J.HARBISON, L.FLOREZ, and JOSEPH H.ABELES, “DC and AC Characteristics of Delta-Doped GaAs FET,” IEEE, VOL.10, NO.7, JULY 1989.
    [1.7]Wei-Chou Hsu, Hir-Ming Shieh, Ming-Jer Kao, Rong-Tay Hsu, and Yu-Huei Wu, “On the Improvement of Gate Voltage Swings in δ-Doped GaAs/InxGa1-xAs/GaAs Pseudomorphic Heterostructures,” IEEE, VOL.40, NO.9, September, 1993.
    [1.8]Wei-Chou Hsu, Wen-Chau Liu, and Der-Feng Guo, “GaAs-InGaAs double quantum-well switching device prepared by molecular beam epitaxy,” Appl. Phys., Lett., Vol.62, NO.13,29 March 1993.

    [1.9]M.J.Kao, W.C.Hsu, R.T. Hsu, Y.H.Wu, and T.Y.Lin, “Characteristics of graded-like multiple-delta-doped GaAs field effect transistors,” Appl. Phys., Lett., Vol.66, NO.19, May 1995.
    [1.10]X.Zheng, T.K. Carns, K.L.Wang, and B.Wu, “Electron mobility enhancement from coupled wells in delta-doped GaAs,” Appl. Phys., Lett., Vol.62, NO.5, February 1993.
    [1.11]Bass S. J., "Silicon and germanium doping of epitaxial gallium arsenide grown by the trimethyl gallium-arsine method," J. Cryst. Growth, 47, 613, 1979.
    [1.12]K.Board, and H. C. Nutt, "Double delta-doped FETs in GaAs," Electron Lett., vol. 28, pp. 469-471,1992.
    [1.13]Zeindl H. P., Wegehauppt, T. Eisele, I. Oppolzer, H. Reisinger, H. Tempel, G., and Koch F.,"Growth and characterization of a delta-function doping layer in Si ", Appl. Phys. Lett., 50, 1164, 1987.
    [1.14]H. P Zeindl, B. Bullemer, and I. Eisele, "Delta-doped MESFET with MBE-grown Si," J. Electrochem. Soc., vol. 136(4), pp. 1129-1131, 1989.
    [1.15]Schubert E. F., Cunningham J. E., Tsang W. T., and Chiu T. H., "Delta -doped ohmic contacts to n-GaAs," Appl. Phys. Lett., vol. 49, pp.292, 1986.
    [1.16]K. Nakagawa, A. A. van Gorkum, and Y. Shiraki, "Atomic layer doped field-effect transistor fabricated using Si molecular beam epitaxy," Appl. Phys. Lett., vol.54(19), pp. 1869-1871, 1989.
    [1.17]K. Board, and H. C. Nutt, "Double delta-doped FETs in GaAs," Electron Lett., vol. 28, pp. 469-471,1992.
    [1.18]Zeindl H. P., Wegehauppt, T. Eisele, I. Oppolzer, H. Reisinger, H. Tempel, G., and Koch F.,"Growth and characterization of a delta-function doping layer in Si ", Appl. Phys. Lett., 50, 1164, 1987.
    [1.19]H. P Zeindl, B. Bullemer, and I. Eisele, "Delta-doped MESFET with MBE-grown Si," J. Electrochem. Soc., vol. 136(4), pp. 1129-1131, 1989.
    [1.20]Malik R. J., Lunardi L. M., Walker J. F., and Ryan R. W.,"A planar doped 2D-hole gas base AlGaAs/GaAs hetrojunction bipolar transistor grown by molecular beam epitaxy," IEEE Electron. Dev. Lett., EDL-9,7, 1988.
    [1.21]Streit D. C. and Allen F. G., "Silicon triangular barrier diodes by MBE using solid phase epitaxial regrowth," IEEE Electron. Dev. Lett., EDL5,254, 1984.
    [1.22]H. Temkin, T. P. Pearsall, J. C. Bean, R A. Logan, and S. Luryi, "GeXSi1-X strained-layer superlattice waveguide detectors operatingnear 1.3mm," Appl. Phys. Lett., vol. 48, 1986.
    [1.23]B. S. Meyerson, "Low-temperature silicon epitaxy by ultrahigh vacuum/chemical vapor deposition," Appl. Phys. Lett.,vol.48, 797-799, 1986.
    [1.24]B.S Meyerson, "UHV/CVD growth of Si and SiGe alloys: chemistry, physics, and device applications," Proceedings of the IEEE, vol. 80, no. 10, 1992.
    [1.25]B. Tillack, D. Krüger, P. Gaworzewski, and G. Ritter, "Atomic layer doping of SiGe by low pressure chemical vapor deposition," Thin Solid Film, vol. 294, 15-17, 1997.
    [1.26]B. Tillack, G. Ritter, D. Krüger, P. Zaumseil, G. Morgenstern , and K. D. Glowatzki, "Sharp boron doping within thin SiGe layer by rapid thermal chemical vapor deposition," Material Science and Technology, vol. 11, pp. 1060, 1995.
    [1.27]Roksnoer, P. J., Maes, J. W. F. M., Vink, A. T., Vriezema, C. J., and Zalm, "Sharp boron spikes in silicon grown by fast gas switching chemical vapor deposition," Appl. Phys. Lett., vol. 58, 711, 1991.
    [1.28]A. T. Vink, , P. J. Roksnoer, C. J. Vriezema, L. J. van Ijzendoorn, and P. C. Zalm, "Sharp boron spikes in silicon grown at reduced and atmospheric pressure by fast-gas-switching CVD," Jpn. J. Appl. Phys., vol. 29, L2307, 1990.
    [1.29]J.C. Bean, L. C. Feldman, A. T. Fiory, S. Nakahara, and I. K. Robinson, "GeXSi1-X/Si strained–layer supperlattices growth by molecular beam epitaxy," J. Vac. Sci. Technol., vol.53, 1586, 1982.
    [2.1]R. People, "Physical and applications of GeXSil-X/Si strained-layer heterostructures," IEEE J. Quantum Electron, vol. QE-22, pp. 1696, 1986.
    [2.2]J. H. van der Merwe, "Crystal interfaces. Part II. Finite Overgrowths," Appl. Phys., vol. 34, pp. 123, 1963.
    [2.3]R. People and S. A. Jackson, "Structurally induced states from strain and confinement," Semiconductors and Semimetals, vol. 32, p. 119, 1990.
    [2.4]C. G. van de Walle and R. M. Martin, "Theoretical study of Si/Ge interfaces," J. Vac. Sci. Technol., vol. B3, p. 1256,, 1985.
    [2.5]R. People and J. C. Bean, "Band alignments of coherently strained Si1-XGeX/Si heterostructures on (001) Si1-yGey substrate," Appl. Phys. Lett., vol. 48, p.538, 1986.
    [2.6]J.M. Hinckley, V. Sankaran, and J. Singh, "Charged carrier transport in Si1-xGex pseudomorphic alloys matched to Si strain-related transport improvements," Appl. Phys. Lett., vol. 55, p. 2008,1989.
    [2.7]J.M. Hinckley and J. Singh, "Hole transport theory in pseudomorphic Si1-xGex alloys grown on Si(001) substrates," Phys. Rev. B, vol. 41, p.2912,1990.
    [2.8]A . Kastalsky and R. A. Kiehi, "On the low-temperature dedradation of (AlGa)As/GaAs modulation-doped field-effect transistors," IEEE Trans. Electron Devices, vol. 33 pp. 414 1986.
    [2.9]S. K. Chun and K. L. Wang, "Effective mass and mobility of holes in strained Si1-XGeX on (001) Si1-yGey substrate," IEEE Trans. Electron Devices, Sept., 1992.
    [2.10]S. J. Koester, "Extremely high transconductance Ge/Si0.4Ge0.6 p-MODFET’s grown by UHV-CVD, " IEEE Electron Device Lett., vol. 21(3), pp.110, 2000.
    [2.11]M. Miyao, E. Murakami, H. Etoh, K. Nakagawa, and A. Nishida, "High hole mobility in strained Ge channel of modulation-doped p-Si0.5Ge0.5/Ge/ Si1-xGex heterostucture, " J. Cryst. Growth, vol. 111, pp.912, 1991.
    [4.1] SEMICONDUCTOR DEVICES Physics and Technology pp.201
    [4.2] SEMICONDUCTOR PHYSICS & DEVICES pp.201
    [4.3] SEMICONDUCTOR PHYSICS & DEVICES (SECOND EDITION) pp.308
    [4.4] M.Ploog, M. Hauser, and A.Fisher, “Delta-doping in molecular beam epitaxially grown GaAs and AlGaAs/GaAs device structures,” Inst.Phys.Conf., Ser. No. 91, ch.1,pp.27-32,1988.
    [4-5]E.Schubert, J. Cunningham, and W. Tsang, “Electron-mobility enhancement and electron-concentration enhancement in delta-doped n- GaAs at T=300K,” Solid State Commum., vol.63, no.7 ,pp.591-194,1987.
    [4-6]A.Zrenner, F.Koch, and K.Ploog, “Facts and fancies about the delta doping layer of Si in MBE-grown GaAs,” Inst. Phys. Conf., Ser. No.91, Ch.3, pp.171-174, 1988.
    [4-7]G. Gillman, B.Vinter, E.Barbier, and T.Tardella, “Experimental and theoretical mobility of electrons in delta-doped GaAs,” Appl. Phys. Lett., vol. 52, no. 12,pp. 972-974,1988.
    [4-8]T.Makimoto, N.Kobayashi, and Y.Horikoshi, “Electron conduction in GaAs atomic layer doped with Si,” J. Appl. Phys.vol.63, no.10, pp.5023-5026, 1988.
    [4-9]WON-PYO HONG, J.Harbsion, L.FLREZ, AND JOSHEPH H.ABELES, “DC and AC Characteristics of Delta-Doped GaAs FET,” IEEE ELECTRON DEVICE LETTERS, vol.10, no.7, 1989.
    [4.10]E.F.Schubert, A.Fischer, and K.Ploog, “ The delta-doped field-effect transistor (d FET),” IEEE Trans. Electron Devices, vol. ED-33 (5), pp.625-632, 1986.
    [4.11]E.F.Schubert, “Delta doping of III-V compound semiconductors: Fundamentals and device application,” J.Vac.Sci.Technol.,A 8(3),pp.2980-2996.
    [4.12]Solid State and Materials Sciences.
    [4.13]Y. S. Lin, W. C. Hsu, and C. H. Wu, “High breakdown voltage symmetric double δ-doped In0.49Ga0.51P/In0.25Ga0.75As/GaAs high electron mobility transistor,’’ Appl. Phys.vol.75, no.11, 1999.
    [4.14]C. E. C. Wood, G. Metze, J. Berry, and L. F. Eastman, J. Appl. Phys.51, 383, 1980.
    [4.15]X.Zheng, T.K. Carns, K.L.Wang, and B. Wu, “Electron mobility enhancement from coupled wells in delta-doped wells,” Appl.Phys.Lett.,vol.62, pp.504-507,1993.
    [4-16]T.K. Carns, X.Zheng, K.L.Wang, “Enhancement of Si hole mobility in coupled delta-doped wells,” Appl.Phys.Lett.,vol.62, pp.3455-3457,1993.
    [4-17]Ming-Jer Kao, Hir-Ming Shieh, Member, IEEE, Wei-Chou Hsu, Member, IEEE, Tien-Yih Lin, “Investigation of the Electron Transfer Characteristics in Multi-d-Doped GaAs FET’s,” IEEE TRANSACTIONS ON ELECTRON DEVICE, VOL.43 PP.1181-1185.
    [6.1]M.Arafa, K. Ismail, J.O.Chu, and I.Adesida, “High Performance Self-Aligned SiGe P-Type Modulation-Doped Field-Effect Transistors,” Appl.Phys.Lett.,vol.64, pp.3124-3126,1994.
    [6.2]S.J.Koester, R.Hammond, J.O.Chu, J.A. Ott, P.M. Mooney, L.Perraud, and K.A.Jenkins, “High Performance SiGe pMODFETs grown by UHV-CVD,” IEEE, 1999.
    [6.3]I.Adesida, M.Arafa, K.Ismail, J.O.Chu, and B.S. Meyerson, “Submicrometer p-Type SiGe Modulation-Doped Field-Effect Transistors for High Speed Applications,” Microelectronic Engineering 35(1997) 257-260.
    [6-4]G.Hock, N.Kab, T.Hackbarth, U.Konig and E.Kohn, “0.1 um T-Gate p-Type Ge/SiGe MODFETs,” IEEE, 2000.
    [6-5]S.J.Koester, R.Hammond, and J.O.Chu, “Extremely High Transconductance Ge/Si0.4 Ge0.6 p-MODFET’s Grown By UHV-CVD,” IEEE, VOL.21, NO.3, MARCH, 2000.
    [6-6]U.Konig and F.Schaffler, “p-Type Ge-Channel MODFET’s with High Transconductance Grown on Si Substrate,” IEEE, VOL.14, NO.4, APPRIL, 1993.

    下載圖示
    2003-07-04公開
    QR CODE