| 研究生: |
蔡宗佑 Tsai, Tsung-Yu |
|---|---|
| 論文名稱: |
以農業廢棄物及微藻生質體為料源進行固定化細胞丁醇醱酵並結合薄膜蒸餾法進行產物同步移除以提升丁醇產量 Biobutanol fermentation with immobilized cells using agricultural wastes and microalgal biomass as feedstock combining VMD in-situ product removal to enhance butanol production |
| 指導教授: |
張嘉修
Chang, Jo-Shu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 英文 |
| 論文頁數: | 163 |
| 中文關鍵詞: | 生質丁醇 、微藻 、纖維素 、PVA 、固定化菌體 、真空薄膜蒸餾(VMD) |
| 外文關鍵詞: | Biobutanol, Clostridium acetobutylicum, microalgae biomass, lignocellulosic feedstock, PVA, immobilized cells, vacuum membrane distillation (VMD) |
| 相關次數: | 點閱:165 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於pH控制是丁醇醱酵之重要影響參數,本研究首先探討分別使用添加化學藥品及使用自動控制裝置維持發酵液pH值對於丁醇生產之影響。結果顯示,當添加100 mM醋酸緩衝溶液時,能將pH控制在4.3,並有效地將丁醇生產濃度從2.0 g/l (無pH控制) 提升至5.5 g/l。添加碳酸鈣對pH控制有較佳的效果,當添加8 g/l以上之碳酸鈣時,能將發酵液pH值維持在4.8以上,此pH值為較適合丁醇生產的pH,因此丁醇產量可提升至10.4 g/l。此外,使用自動控制裝置維持發酵液pH為4.5則是最佳之丁醇生產方式,其丁醇濃度可達11.1 g/l。
接著本研究利用不同料源(稻桿、蔗渣、微藻)為料源進行丁醇生產。結果發現當使用二階段水解發酵(SHF)時,以稻桿作為料源其丁醇產量為9.1 g/l,以蔗渣作為料源時,其丁醇產量為8.4 g/l。當使用微藻作為料源時,當藻體濃度大於120 g/l時,必須使用3%硫酸進行水解才可達到較高之葡萄糖回收率,但藻體在此酸濃度下進行水解會伴隨著抑制物的生成,導致菌體無法生長。因此本研究直接利用未經過水解的藻體作為料源進行丁醇之生產之。結果發現,在藻體濃度為60, 120, 180 g/l時,其丁醇產量分別為0.34, 3.20, 4.36 g/l。
為了提升丁醇生產速率,本研究以連續式生產系統進行丁醇生產之探討。結果發現在HRT 為24小時,其丁醇濃度、產率、生產速率分別為8.7±0.9 g/l, 0.42±0.03 mol-butanol/mol-glucose, 0.36±0.04 g/l/h。當連續式丁醇生產系統結合真空薄膜蒸餾裝置進行產物同步移除後,其丁醇濃度、產率、生產速率分別為11.5±0.2 g/l, 0.48±0.03 mol-butanol/mol-glucose, 0.51±0.09 g/l/h,顯見結合產物同步移除裝置確實能提升整體丁醇生產效率。然而,在低HRT (12小時)情況下,因水力滯留時間過短,導致其丁醇產量仍然偏低且無法長時間操作。
在操作連續式丁醇生產系統時,通常存在著穩定性的問題,即當操作時間達2-3星期時會有菌體失活的情形,使得無法於低HRT下操作。因此,本研究採用PVA固定化菌體提升菌體添加量以提升丁醇產量。在批次實驗中,當固定化菌體添加量為20.63 g/l時有最佳的丁醇生產效果。使用固定化細胞可提高菌體添加量,此時基質中的昂貴的營養成分(如酵母萃取物yeast extract)可完全移除,以降低成本。接著,本研究採用饋料批次系統結合產物移除裝置以固定化菌體進行丁醇生產,結果發現其丁醇產量及產率可達29 g/l及0.44 mol-butanol/mol-glucose。最後本研究以固定化菌體進行連續式丁醇生產,在HRT 6小時的情況下,其最佳丁醇產量及生產速率為8.8±0.8 g/l 及 1.47±0.14 g/l/h,且穩定操作時間可長達52天。
This study first investigated the feasibility of using two kinds of pH control methods (i.e., chemical addition and auto-titration) for bio-butanol production with Clostridium acetobutylicum ATCC 824. Addition of 100 mM acetate buffer could maintain the pH at a constant level and exhibiting an improvement in the butanol concentration from 2.0 g/l to 5.5 g/l. Calcium carbonate was also used to maintain the pH of the ABE fermentation. When the concentration of calcium carbonate was greater than 8 g/l, the pH could effectively be maintained at around 4.8, which is an appropriate pH for ABE fermentation. Finally, the pH of ABE fermentation was controlled at 4.5 via auto-titration, resulting in better butanol production of 11.1 g/l.
Next, the renewable feedstock such as rice straw, bagasse, starch, and microalgae biomass was used for butanol fermentation. The results showed that using separated hydrolysis and fermentation (SHF) process, the butanol concentration and butanol productivity were 9.1 g/l and 0.79 g/l/h, respectively, for rice straw, and 8.4 g/l and 0.80 g/l/h, respectively, for bagasse. On the other hand, microalgal biomass was also used as feedstock for butanol production. Because some inhibitors were formed during acidic hydrolysis of microalgal biomass, butanol production was conducted directly using non-hydrolyzed microalgae biomass, which contained high carbohydrate content (mainly in the form of starch). The results showed that butanol concentration reached 0.34, 3.20, and 4.36 g/l with a microalgal biomass concentration of 60, 120, and 180 g/l (equivalent to 17.4, 34.8, and 52.2 g/l of starch), respectively.
The butanol yield and productivity found in the continuous mode at the HRT of 24 hr were 0.42±0.03 mol-butanol/mol-glucose and 0.36±0.04 g/l/h, respectively. In the integrated process of continuous fermentation combined with in-situ butanol removal system by vacuum membrane distillation, the butanol yielded and productivity were elevated to 0.48±0.03 mol-butanol/ mol-glucose and 0.51±0.09 g/l/h, respectively.
The feasibility of using PVA-immobilized Clostridium acetobutylicum was also examined for batch, fed-batch, and continuous butanol production. The immobilized cells were operated on the batch mode with different kinds of cells loading and the results showed that the optimum cell loading was 20.63 g-cells/l. When using the high cells loading, the costly nutrient, yeast extract, could be completely removed from the medium with similar butanol producing performance on batch mode. By integrated with VMD, the fed-batch butanol production and yield were 29 g/l and 0.44 mol-butanol/mol-glucose, respectively. However, when continuous butanol fermentation was operated with yeast extract-free medium, butanol production cannot maintain steady-state after long-term operation. Therefore, the optimum yeast extract concentration of 1.25 g/l was used for continuous butanol production and a stable continuous culture was achieved. At a HRT of 6 h, the butanol concentration and productivity were 8.8±0.8 g/l and 1.47±0.14 g/l/h, respectively, and the steady-state operation could be maintained for more than 52 days.
Adler, H.I., Crow, W. A technique for predicting the solvent-producing ability of Clostridium acetobutylicum. Applied and Environmental Microbiology, 53, 2496-2499. 1987
Agbor, V.B., Cicek, N., Sparling, R., Berlin, A., Levin, D.B. Biomass pretreatment: Fundamentals toward application. Biotechnology Advances, 29(6), 675–685. 2011
Aleksic, S. 2009. Butanol Production from Biomass. in: Chemical Engineering, Vol. master, Youngstown State University, pp. 48.
Alvira, P., Tomas-Pejo, E., Ballesteros, M., Negro, M.J. Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review. Bioresource Technology, 101(13), 4851-4861. 2010
Asada, Y., Miyake, J. Photobiological hydrogen production. Journal of Bioscience and Bioengineering 88, 1-6. 1999
Assobhei, O., Kanouni, A.E., Ismaili, M., Loutfi, M., Petitdemange, H. Effect of acetic and butyric acids on the stability of solvent and spore formation by Clostridium acetobutylicum ATCC 824 during repeated subculturing. Journal of Fermentation and Bioengineering, 85(2), 209-212. 1998
Baba, S., Tashiro, Y., Shinto, H., Sonomoto, K. Development of high-speed and highly efficient butanol production systems from butyric acid with high density of living cells of Clostridium saccharoperbutylacetonicum. Journal of Biotechnology, 157(4), 605-617. 2011
Bahl, H., Andersch, W., Gottschalk, G. Continuous Production of Acetone and Butanol by Clostridium acetobutylicum in a Two-Stage Phosphate Limited Chemostat. European Journal of Applied Microbiology and Biotechnology 15, 201-205. 1982
Bahl, H., Gottschalk, G. Parameters affecting solvent production by Clostridium acetobutylicum in continuous culture. Biotechnology and bioengineering symposium, 14, 215-223. 1984
Barbeau, J.Y., Marchal, R., Vandecasteele, J.P. Conditions promoting stability of solventogenesis or culture degeneration in continuous fermentations of Clostridium acetobutylicum. Applied Microbiology and Biotechnology, 29, 447-455. 1988
Biebl, H. Fermentation of glycerol by Clostridium pasteurianum - batch and continuous culture studies. Journal of Industrial Microbiology & Biotechnology, 27, 18-26. 2001
Blanch, H.W., Simmons, B.A., Klein-Marcuschamer, D. Biomass deconstruction to sugars. Biotechnology Journal, 6, 1086–1102. 2011
Bochman, M., Cotton, F.A., Murillo, C.A., Wilkinson, G. Advanced inorganic chemistry. USA: John Wiley & Sons, Inc. 1999
Cardona, C.A., Sánchez, Ó.J. Fuel ethanol production: process design trends and integration opportunities. Bioresource Technology, 98, 2415-2457. 2007
Chen, B.Y., Chuang, F.Y., Lin, C.L., Chang, J.S. Deciphering butanol inhibition to Clostridial species in acclimatized sludge for improving biobutanol production. Biochemical Engineering Journal, 69, 100– 105. 2012
Chen, H., Qiu, W. 2010. , 28(5), 556-62. Key technologies for bioethanol production from lignocellulose. Biotechnology Advances, 28(5), 556-562. 2010
Chen, K.C., Wu, J.Y., Yang, W.B. Evaluation of effective diffusion coefficient and intrinsic kinetic parameters on azo dye biodegradation using PVA-immobilized cell beads. Biotechnology and Bioengineering 83(7), 821-832. 2003
Chen, M., Zhao, J., L., X. Enzymatic hydrolysis of maize straw polysaccharides for the production of reducing sugars. Carbohydrate Polymers, 71(2), 411-415. 2008
Cheng, C.L., Che, P.Y., Chen, B.Y., Lee, W.J., Lin, C.Y., Chang, S. Biobutanol production from agricultural waste by an acclimated mixed bacterial microflora. Applied Energy, 100(3-9). 2012
Cheng, J.J., Timilsin, G.R. Status and barriers of advanced biofuel technologies: A review. Renewable Energy, 36(12), 3541–3549. 2011
Curcio, E., Drioli, E. Membrane distillation and related operations - A review. Separation and Purification Reviews, 34, 35-38. 2005
Dürre, P. Biobutanol: An attractive biofuel. Biotechnology Journal, 2, 1525-1534. 2007
Das, D., Veziroglu, T.N. Hydrogen production by biological processes: a survey of literature. International Journal of Hydrogen Energy, 26, 13-28. 2001
Demirbas, A. Use of algae as biofuel sources. Energy Conversion and Management, 51(12), 2738-2749. 2010
Demirbas, M.F. Biofuels from algae for sustainable development. Applied Energy 88(10), 3473-3480. 2011
Ding, S.Y., Himmel, M.E. The maize primary cell wall microfibril: A new model derived from direct visualization. Journal of Agricultural and Food Chemistry, 54, 597-606. 2006
Dunn, S. Hydrogen futures: toward a sustainable energy system. International Journal of Hydrogen Energy, 27, 235-264. 2002
Efremenko, E.N., Nikolskaya, A.B., Lyagin, I.V., Senko, O.V., Makhlis, T.A., Stepanov, N.A., Maslova, O.V., Mamedova, F., Varfolomeev, S.D. Production of biofuels from pretreated microalgae biomass by anaerobic fermentation with immobilized Clostridium acetobutylicum cells. Bioresource Technology, 114, 342-348. 2012
Emtiazi, G., Nahvi, I. Multi-enzyme production by Cellulomonas sp grown on wheat straw. Biomass & Bioenergy, 19, 31-37. 2000
Ezeji, T., Blaschek, H.P. Fermentation of dried distillers’ grains and solubles (DDGS) hydrolysates to solvents and value-added products by solventogenic clostridia. . Bioresource Technology, 99, 5232-5242. 2008
Falbe, J. Carbon monoxide in organic synthesis Berlin-Heidelberg- New York: Springer Verlag. 1970
Falls, M., Holtzapple, M.T. Oxidative lime pretreatment of Alamo switchgrass. Applied Biochemistry and Biotechnology, 165(2), 506-522. 2011
Ghose, T.K. Measurement of Cellulase Activity. Pure and Applied Chemistry, 59, 257-268. 1987
Ghose, T.K., Tyagi, R.D. Rapid ethanol fermentation of cellulose hydrolysate I.Batch versus continuous systems. Biotechnology and Bioengineering, 21, 1387-1400. 1979
Girio, F.M., Fonseca, C., Carvalheiro, F., Duarte, L.C., Marques, S., Bogel-Łukasik, R. Hemicelluloses for fuel ethanol: a review. Bioresour Technol 101(13), 4775-4800. 2010
Gonzalez, L.E., Bashan, Y. Increased growth of the microalga Chlorella vulgaris when coimmobilized and cocultured in alginate beads with the plant-growth-promoting bacterium Azospirillum brasilense. Applied and Environmental Microbiology, 66(4), 1527-1531. 2000
Gottschal, J.C., Morris, J.G. Non-production of acetone and butanol by Clostridium acetobutylicum during glucose- and ammonium-limitation in continuous culture. Biotechnology Letters, 3, 525-530. 1981
Gowen, C.M., Fong, S.S. Exploring biodiversity for cellulosic biofuel production. Chemistry & Biodiversity, 7(5), 1086–1097. 2010
Graminha, E.B.N., Gongalves, A.Z.L., Pirota, R.D.P.B., Balsalobre, M.A.A., Da, S.R., Gomes, E. Enzyme production by solid-state fermentation: Application to animal nutrition. Animal Feed Science and Technology, 144, 1-22. 2008
Gryta, M., Morawski, A.W., Tomaszewska, M. Ethanol production in membrane distillation bioreactor. Catalysis Today 56, 159-165. 200
Hallenbeck, P.C., Benemann, J.R. Biological hydrogen production: fundamentals and limiting processes. International Journal of Hydrogen Energy 27, 1185-1193. 2002
Harun, R., Danquah, M.K., Forde , G.M. Microalgal biomass as afermentation feedstock for bioethanol production. Journal of Chemical Technology and Biotechnology 85(2), 199-203. 2010
Hendriks, A.T., Zeeman, G. Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresource Technology, 100(1), 10-18. 2009
Ho, S.H., Huang, S.W., Chen, C.Y., Hasunum, T., Kondo, A., Chang, J.S. Bioethanol production using carbohydrate-rich microalgae biomass as feedstock. Bioresour Technol, 135, 191-198. 2013
Holt, R.A., Cairns, A.J., Morris, J.G. Production of butanol by Clostridium puniceum in batch and continuous culture. Applied Microbiology and Biotechnology, 27(4), 319-324. 1988
Holt, R.A., Stephens, G., Morris, J.G. Production of solvent by Clostridium acetobutylicum cultures maintained at neutral pH. APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 48(6), 1166-1170. 1984
Huang, R.L., Su, R.X., Qi, W., He, Z.M. Bioconversion of Lignocellulose into Bioethanol: Process Intensification and Mechanism Research. BioEnergy Research, 4(4), 225-245. 2011
Husemann, M.H.W., Papoutsakis, E.T. Solventogenesis in Clostridium Acetobutylicum fermentations related to carboxylic acid and proton concentrations. Biotechnology and Bioengineering, 32, 843-852. 1987
Izquierdo-Gil, M.A., Jonsson, G. Factors affecting flux and ethanol separation performance in vacuum membrane distillation (VMD). Journal of Membrane Science, 214, 113-130. 2003
Jang, Y.S., Malaviya, A., Cho, C., Lee, J., Lee, S.Y. Butanol production from renewable biomass by clostridia. Bioresource Technology, 123, 653–663. 2012
Jones, D.T., Westhuizen, A.V.D., Long, S., Allcock, E.R., Reid, S.J., Woods, D.R. Solvent production and morphological changes in Clostridium acetobutylicum. Applied and Environmental Microbiology, 43, 1434-1439. 1982
Kanouni, A.E., Zerdani, I., Zaafa, S., Znassni, M., Loutfi, M., Boudouma, M. The improvement of glucose/xylose fermentation by Clostridium acetobutylicum using calcium carbonate. World Journal of Microbiology & Biotechnology, 14, 431-435. 1998
Kashket, E.R., Cao, Z.-T. Clostridial strain degeneration. FEMS Microbiology Reviews, 17, 307-315. 1995
Klasson, K.T., Ackerson, M.D., Clausen, E.C., Gaddy, J.L. Bioreactors for synthesis gas fermentations. Resources, Conservation and Recycling, 5, 145-165. 1991
Lee, S.M., Cho, M.O., Park, C.H., Chung, Y.C., Kim, J.H., Sang, B., Um, Y. Continuous Butanol Production Using Suspended and Immobilized Clostridium beijerinckii NCIMB 8052 with Supplementary Butyrate. Energy Fuels, 22(5), 3459–3464. 2008a
Lee, S.Y., Park, J.H., Jang, S.H., Nielsen, L.K., Kim, J., Jung, K.S. Fermentative butanol production by clostridia. Biotechnology and Bioengineering, 101(2), 209-228. 2008b
Li, L., Ai, H., Zhang, S., Li, S., Liang, Z., Wu, Z.Q., Yang, S.T., Wang, J.F. Enhanced butanol production by coculture of Clostridium beijerinckii and Clostridium tyrobutyricum. Bioresource Technology, 143, 397-404. 2013
Li, S.Y., Srivastava, R., Suib, S.L., Li, Y., Parnas, R.S. Performance of batch, fed-batch, and continuous A–B–E fermentation with pH-control. Bioresource Technology, 102(5), 4241-4250. 2011
Li, Y., Horsman, M., Wu, N., Lan, C.Q., Dubois-Calero, N. Biofuels from Microalgae. Biotechnology Progress, 24(3), 815-820. 2008
Lienhardt, J., Schripsema, J., S., Q., Blaschek, H.P. Butanol Production by Clostridium beijerinckii BA101 in an Immobilized Cell biofilm Reactor. Applied Biochemistry and Biotechnology(98), 591-598. 2002
Lin, C.Y., Lay, C.H. Effects of carbonate and phosphate concentrations on hydrogen production using anaerobic sewage sludge microflora. International Journal of Hydrogen Energy, 19, 275-281. 2004
Liu, Z., Ying, Y., Li, F., Ma, C., Xu, P. Butanol production by Clostridium beijerinckii ATCC 55025 from wheat bran. Journal of Industrial Microbiology & Biotechnology, 37, 496-501. 2010
Long, S., Jones, D.T., Woods, D.R. Initiation of solvent production, clostridial stage and endospore formation in Clostridium acetobutvlicum P 262. Applied Microbiology and Biotechnology, 20, 256-261 1984
Lopez-Contreras, A.M., Claassen, P.A., Mooibroek, H., De Vos, W.M. Utilisation of saccharides in extruded domestic organic waste by Clostridium acetobutylicum ATCC 824 for production of acetone, butanol and ethanol. Applied Microbiology and Biotechnology, 54, 162-167. 2000
Lu¨ tke-Eversloh, T., Bahl, H. Metabolic engineeringof Clostridium acetobutylicum: recent advances to improve butanol production. Current Opinion in Biotechnology, 22, 1-14. 2011
Marchal, R., Blanchet, D., Vandecasteele, J.P. Industrial optimization of acetone-butanol fermentation: a study of the utilization of Jerusalem artichokes. Applied Microbiology and Biotechnology, 23, 92-98. 1985
Mariano, A.P., Costa, C.B.B., de Angelis, D.D., Maugeri, F., Atala, D.I.P., Maciel, M.R.W., Maciel, R. Optimization Strategies Based on Sequential Quadratic Programming Applied for a Fermentation Process for Butanol Production. Applied Biochemistry and Biotechnology 159, 366-381. 2009
Mata, T.M., Martins, A.A., Caetano, N.S. Microalgae for biodiesel production and other applications: A review. Renewable and Sustainable Energy Reviews, 14(1), 217-232. 2010
Matta-El-Ammouri, G., Janati-Idrissi, R., Junelles, A.M., Petitdemange, H., Gay, R. Effects of butyric and acetic acids on acetone-butanol formation by Clostridium acetobutylicum. Biochimie, 69(2), 109–115. 1987
Miller, G.L. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31, 426-428. 1959
Modak, J.M., Lim, H.C., Tayeb, Y.J. General characteristics of optimal feed rate profiles for various fed-batch fermentation processes. Biotechnology and Bioengineering, 28, 1396-1407. 1986
Momirlan, M., Veziroglu, T. Recent directions of world hydrogen production. Renewable & Sustainable Energy Reviews, 3, 219-231. 1999
Monot, F., Martin, J.-R., Petitdemange, H., Gay, R. Acetone and Butanol Production by Clostridium acetobutylicum in a Synthetic Medium. Appl. Environ. Microbiol., 44(6), 1318-1324. 1982
Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y.Y. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technology, 96(6), 673-686. 2005
Moxley, G., Zhang, Y.H.P. More accurate determination of acid-labile carbohydrates in lignocellulose by modifiedquantitative saccharification. Energy Fuels 21(6), 3684-3688. 2007
Mu, Y., Yu, H.Q., Wang, G. A kinetic approach to anaerobic hydrogen-producing process. Water Research, 41, 1152-1160. 2007
NREL. Measurement of cellulase activities. in: Technical Report. NREL. 2008
Qureshi, N., Ezeji, T.C., Ebener, J., Dien, B.S., Cotta, M.A. Butanol production by Clostridium beijerinckii. Part I: use of acid and enzyme hydrolyzed corn fiber. Bioresource Technology, 99, 5915-5922. 2008
Qureshi, N., Lolas, A., Blaschek, H.P. Soy molasses as fermentation substrate for production of butanol using Clostridium beijerinckii BA101. Journal of Industrial Microbiology and Biotechnology, 26, 290-295. 2001
Qureshi, N., Saha, B.C., Cotta, M.A. Butanol production from wheat straw hydrolysate using Clostridium beijerinckii. Bioprocess and Biosystems Engineering, 30, 419-427. 2007
Rubin, E.M. Genomics of cellulosic biofuels. Nature, 454, 841-845. 2008
Rubinow, S.I. Introduction to mathematical biology A wiley-interscience. 2002
Saratale, G.D., Chen, S.D., Lo, Y.C., Saratale, R.G., Chang, J.S. Outlook of biohydrogen production from lignocellulosic feedstock using dark fermentation - a review. Journal of Scientific & Industrial Research 67, 962-979. 2008
Sarkar, N., Ghosh, S.K., Bannerjee, S., Aikat, K. Bioethanol production from agricultural wastes: An overview. Renewable Energy, 37(1), 19–27. 2012
Schugerl, K. Integrated processing of biotechnology products. Biotechnology Advances, 18, 581-599. 2000
Shoko, E., McLellan, B., Dicks, A.L., da Costa, J.C.D. Hydrogen from coal: Production and utilisation technologies. International Journal of Coal Geology, 65, 213-222. 2006
Stephens, G.M., Holt, R., Gottschal, J., Morris, J. Studies on the stability of solvent production by Clostridium acetobutylicum in continuous culture. Journal of Applied Microbiology, 58, 597-605. 1985
Stiegel, G.J., Ramezan, M. Hydrogen from coal gasification: An economical pathway to a sustainable energy future. International Journal of Coal Geology, 65, 173-190. 2006
Stim-Herndon, K.P., Nair, R., Papoutsakis, E.T., Bennett, G.N. Analysis of Degenerate Variants of Clostridium acetobutylicum ATCC 824. BIOTECHNOLOGY/FOOD MICROBIOLOGY, 2, 11-18. 1996
Sun, Y., Cheng, J. Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresource Technology, 83(1), 1-11. 2002
Tashiro, Y., Shinto, H., Hayashi, M., Baba, S., Kobayashi, G., Sonomoto, K. Novel high-efficient butanol production from butyrate by non-growing Clostridium saccharoperbutylacetonicum N1-4 (ATCC 13564) with methyl viologen. Journal of Bioscience and Bioengineering, 104(3), 238-240. 2007
Tashiro, Y., Sonomoto, K. Advances in butanol production by clostridia. formatex, 1383-1394. 2010
Thang, V.H., Kanda, K., Kobayashi, G. Production of acetone-butanol-ethanol (ABE) in direct fermentation of cassava by Clostridium saccharoperbutylacetonicum N1–4. Applied Biochemistry and Biotechnology, 161, 157-170. 2010
Van Ginkel, S., Sung, S.W., Lay, J. Biohydrogen production as a function of pH and substrate concentration. Environmental Science & Technology 35, 4726-4730. 2001
Vane, L.M. Separation technologies for the recovery and dehydration of alcohols from fermentation broths. Biofuels Bioproducts & Biorefining, 2, 553-588. 2008
Varfolomeev, S.D., Wasserman, L.A. Microalgae as source of biofuel, food, fodder, and medicines. Applied Biochemistry and Microbiology, 47(9), 789-807. 2011
Woods, D.R., Jones, D.T. Acetone-Butanol fermentation revisited. MICROBIOLOGICAL REVIEWS, 50(4), 484-524. 1986
Woolley, R., Morris, J. Stability of solvent production by Clostridium acetobutylicum in continuous culture: strain differences. Journal of Applied Microbiology, 69, 718-728. 1990
Wu, J.F. 2006. Biohydrogen production using starch as the carbon substrate. in: Department of Chemical Engineering, Vol. Master, National Cheng Kung University.
Yazdani, S.S., Gonzalez, R. Anaerobic fermentation of glycerol: a path to economic viability for the biofuels industry. Current Opinion in Biotechnology, 18, 213-219. 2007
Yen, H.W., Li, R.J., Ma, T.W. The development process for a continuous acetone–butanol–ethanol (ABE) fermentation by immobilized Clostridium acetobutylicum. Journal of the Taiwan Institute of Chemical Engineers, 42(6), 902-907. 2011
Yen, H.W., Lin, S.F., Yang, I.K. Use of poly(ether-block-amide) in pervaporation coupling with a fermentor to enhance butanol production in the cultivation of Clostridium acetobutylicum. Journal of Bioscience and Bioengineering, 113(3), 372–377. 2012
Zhang, Y.H.P., Ding, S.Y., Mielenz, J.R., Cui, J.B., Elander, R.T., Laser, M., Himmel, M.E., McMillan, J.R., Lynd, L.R. Fractionating recalcitrant lignocellulose at modest raction conditions. Biotechnology and Bioengineering, 97(213-223). 2007
Zheng, Y.N., Li, L.Z., Xian, M., Ma, Y.J., Yang, J.M., Xu, X., He, D.Z. Problems with the microbial production of butanol. Journal of Industrial Microbiology and Biotechnology, 36, 1127-1138. 2009
Zumdahl , S.S., Zumdahl, S.A. Chemistry 7th Edition. Hardcover. 2007
Zverlov, V.V., Berezina, O., Velikodvorskaya, G.A., Schwarz, W.H. Bacterial acetone and butanol production by industrial fermentation in the Soviet Union: use of hydrolyzed agricultural waste for biorefinery. Applied Microbiology and Biotechnology, 71, 587-597. 2006
Zwietering, M.H., Jongenburger, I., Rombouts, F.M., Vantriet, K. Modeling of the Bacterial-Growth Curve. Applied and Environmental Microbiology, 56, 1875-1881. 1990
校內:2024-12-31公開