簡易檢索 / 詳目顯示

研究生: 王崇任
Wang, Chung-Ren
論文名稱: 應用虛擬量測技術於機台預測保養
A Predictive Maintenance Approach utilizing Virtual Metrology Technology
指導教授: 鄭芳田
Cheng, Fan-Tien
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 製造資訊與系統研究所
Institute of Manufacturing Information and Systems
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 69
中文關鍵詞: 虛擬量測預測保養以條件為基的保養PECVD製程機台通用型機台模型
外文關鍵詞: Virtual Metrology, Predictive Maintenance, Condition-based Maintenance, PECVD Equipment, Common Equipment Model
相關次數: 點閱:157下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 目前多數錯誤偵測與診斷及預測保養的方法,是找出關鍵零組件失效模式,萃取出特徵訊號,建立其模型。但由於失效模式有很多種形態,且也無法保證能將所有的失效模式均收集起來,使得無法準確進行錯誤偵測與診斷及預測保養。為解決此一缺失,本篇論文應用虛擬量測技術發展出Baseline Predictive Maintenance機制。虛擬量測(VM)之定義為:『在產品尚未或無法進行實際量測之情況下,利用生產機台參數,推估其所生產之產品品質』。本篇論文應用虛擬量測的技術即時產生機台或關鍵零組件之健康狀態的基準點,並利用一啟發式模型精進演算法來優化預測健康狀態基準點的模型。透過整合來自實際觀測值與預測值之差以及重要參數的變化,訂定出判斷邏輯來實現預測保養及錯誤診斷的目標。

    At present, most FDC and PdM approaches are to find out the failure mode of the target device, extract out the characteristic signals, and set up their models. However, there are too many kinds of failure modes to ensure the collection of all of them, thus, FDC and PdM cannot be accurately executed. In order to solve this disadvantage, Virtual Metrology for developing Baseline Predictive Maintenance Mechanism is utilized. Virtual Metrology is defined as “utilizing the equipment parameter data to forecast the quality of products before the products are either not ready or not able to be measured”. In this paper, an approach to predict the healthy baseline of the target device in real-time and utilize a heuristic algorithm to enhance the baseline-predicted model is proposed. By integrating the differences between real measurement and virtual metrology and the variance of key parameters, diagnostic logics are set to realize the goals of PdM and FDC.

    目錄 中文摘要 英文摘要 誌謝 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機與目的 3 1.3 論文架構 4 第二章 文獻探討與半導體機台模組分析 5 2.1 文獻探討 5 2.1.1 FDC文獻探討 5 2.1.2 PdM文獻探討 7 2.2 半導體機台分析 10 2.2.1 晶圓處理製程(Wafer Fabrication)流程 10 2.2.2 半導體機台作用原理 11 2.2.3 機台保養模組種類歸納 14 第三章 研發Baseline預測保養架構 18 3.1 全自動虛擬量測系統(Automatic Virtual Metrology (AVM) System) 18 3.1.1 全自動虛擬量測系統介紹 18 3.1.2 複迴歸 21 3.1.3 倒傳遞類神經網路 22 3.1.4 個體相似性指標(ISI) 23 3.2 動態移動視窗機制 (Dynamic Moving Window Scheme) 24 3.3 機台狀態轉移的概念 28 3.4 失效時間預測之方法論 29 3.5 BPM架構說明 32 3.5.1 TD Baseline Model說明及挑選所需之重要樣本 33 3.5.2 收集建構ISIB Model所需之樣本與建模 35 3.5.3 DHI Module之模型建立及說明 36 3.5.4 BEI Module說明 38 3.5.5 診斷邏輯說明 39 3.5.6 BPM內之FDC執行流程說明 41 3.5.7 RUL Predictive Model說明 42 第四章 以PECVD機台實現與驗證BPM架構 45 4.1 TD失效模式分析 46 4.2 建立預測保養模型 48 4.3 FDC與PdM案例實驗結果 49 4.3.1 FDC案例實驗結果—失效模式(1) 49 4.3.2 FDC案例實驗結果—失效模式(2) 51 4.3.3 PdM案例實驗結果—失效模式(3) 53 4.4 預測保養模型精進 55 4.5 模型精進後案例實驗結果 58 4.5.1 FDC案例模型精進後實驗結果—失效模式(1) 58 4.5.2 FDC案例模型精進後實驗結果—失效模式(2) 59 4.5.3 PdM案例模型精進後實驗結果—失效模式(3) 61 4.6 說明加入重要樣本及保留新鮮樣本對於預測 yB的重要性 64 第五章 結論 67 參考文獻 68

    參考文獻
    [1] ISMI Predictive and Preventive Maintenance Equipment Implementation Guidelines, Technology Transfer #08064934A-ENG International SEMATECH Manufacturing Initiative, August 30, 2008.
    [2] ISMI Consensus Preventive and Predictive Maintenance Vision Guideline: Version 1.1 Technology Transfer #06114819C-ENG International SEMATECH Manufacturing Initiative, November 20, 2007.
    [3] J. Hollister and P. McGuire, Research on the Current Status of Predictive Maintenance (PdM) Algorithms and Applications, ISMI Predictive and Preventive Maintenance Initiative, Alan Weber and Associates, Inc., February, 2009.
    [4] ISMI Predictive Preventive Maintenance Data Requirements International SEMATECH Manufacturing Initiative, September 30, 2009
    [5] Predictive Preventive Maintenance Impact on Factory Cost and Cycle Time International SEMATECH Manufacturing Initiative December 31, 2009.
    [6] M.-D. Ma, S.-H. Wong, S.-S. Jang, and S.-T. Tseng, "Fault Detection Based on Statistical Multivariate Analysis and Microarray Visualization," IEEE Transactions on Industrial Informatics, vol. 6, no. 1, February 2010.
    [7] C. Letellier, G. Hoblos, H. Chafouk, "Robust Fault Detection based on Multimodel and Interval Approach. Application to a Throttle Valve," in Proc.19th IEEE Mediterranean Conference on Control and Automation (MED '11), pp. 479-484, Aquis Corfu Holiday Palace, Corfu, Greece. June 20-23, 2011.
    [8] W. Gasta, "Statistical Process Control Using Key Process Indicators for Vacuum Devices, " in Proc. Fifth IEEE International Vacuum Electronics Conference: IEEE IVEC 2004, pp. 109, Monterey, California, USA. April 27-29 2004.
    [9] D. Siegel, J. Lee, and C. Ly, "Methodology and Framework for Predicting Rolling Element Helicopter Bearing Failure," in Proc. 2011 IEEE International Conference on Prognostics and Health Management(PHM), pp.1-9, June 20-23 2011
    [10] J. Liu, D. Djurdjanovic, J. Ni, N. Casoetto, J. Lee, "Similarity based method for manufacturing process performance prediction and diagnosis, "Computers in Industry, vol. 58 (6), pp.558-566, January 2007.
    [11] T. Wang, J. Yu, D. Siegel, and J. Lee, "A Similarity-Based Prognostics Approach for Remaining Useful Life Estimation of Engineered Systems," in Proc. International conference on prognostics and health management, pp.1-6, October 2008

    [12] S.-J. Wu, N. Gebraeel, M.-A. Lawley, Y. Yih, "A Neural Network Integrated Decision Support System for Condition-Based Optimal Predictive Maintenance Policy," IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans, vol. 37, no. 2, pp. 226-236, March 2007.
    [13] Z. Tian, M. J. Zuo, "Health Condition Prediction of Gears Using a Recurrent Neural Network Approach," IEEE Transactions on Reliability, vol. 59, no. 4, pp. 700-705, December 2007.
    [14] F.-T. Cheng, H.-C. Huang, and C.-A. Kao, "Dual-Phase Virtual Metrology Scheme," IEEE Transactions on Semiconductor Manufacturing, vol. 20, no. 4, pp. 566-571, November 2007.
    [15] M.-H. Hung, T.-H. Lin, F.-T. Cheng, and R.-C. Lin, "A Novel Virtual Metrology Scheme for Predicting CVD Thickness in Semiconductor Manufacturing," IEEE/ASME Transactions on Mechatronics, vol. 12, no. 3, pp. 308-316, June 2007.
    [16] Y.-C. Su, T.-H. Lin, F.-T. Cheng, and W.-M. Wu, "Accuracy and Real-Time Considerations for Implementing Various Virtual Metrology Algorithms," IEEE Transactions on Semiconductor Manufacturing, vol. 21, no. 3, pp. 426-434, August 2008.
    [17] F.-T. Cheng, Y.-T. Chen, Y.-C. Su, and D.-L. Zeng, "Evaluating Reliance Level of a Virtual Metrology System," IEEE Transactions on Semiconductor Manufacturing, vol. 21, no. 1, pp. 92-103, February 2008.
    [18] Y.-T. Huang, H.-C. Huang, F.-T. Cheng, T.-S. Liao, and F.-C. Chang, "Automatic Virtual Metrology System Design and Implementation," in Proc. 2008 IEEE International Conference on Automation Science and Engineering, Washington, D.C., U.S.A., pp. 223-229, August 2008.
    [19] Y.-T. Huang, F.-T. Cheng, " Automatic Data Quality Evaluation for the AVM System," IEEE Transactions on Semiconductor Manufacturing, vol. 24, no. 3, pp.445-454, August 2011.
    [20] R. L. Mason, R. F. Gunst, and J. L. Hess, Statistical Design and Analysis of Experiments with Applications to Engineering and Science, New York: Wiley, 1989
    [21] S. Haykin, “Neural Networks, A Comprehensive Foundation,” Prentice Hall, NJ:07458, 1999.
    [22] D. W. Scott, Wiley Interdisciplinary Reviews: Computational Statistics, vol. l, issue 3, pp. 303-306, Nov 2009.
    [23] 羅文雄, 蔡榮輝, 鄭岫盈 「半導體製造技術」,滄海書局,2011
    [24] 郝平,”電子產品老化時間的簡便計算及程序”,www.cqvip.com.
    [25] 蘇育全, “智慧型預測系統設計與實作”, 國立成功大學製造工程研究所博士論文, 2006.

    無法下載圖示 校內:2017-02-07公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE