| 研究生: |
姚權哲 Yao, Chemg-Zhe |
|---|---|
| 論文名稱: |
強耦合下的量子布朗運動的非平衡態量子熱力學 The nonequilibrium quantum thermodynamics of quantum Brownian motion in strong-coupling |
| 指導教授: |
張為民
Zhang, Wei-Min 蔡錦俊 Tsai, Chin-Chun |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 英文 |
| 論文頁數: | 117 |
| 中文關鍵詞: | 量子熱力學 、非平衡統計力學 、量子退相干 |
| 外文關鍵詞: | quantum thermodynamics, non-equilibrium statistic mechanics, decoherence dynamics |
| 相關次數: | 點閱:54 下載:10 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在這篇論文中,我們介紹了我們的非微擾重整化理論,並且將其應用於研究在強耦合下的量子布朗運動的量子熱力學。我們應用相干態表示下的高斯積分和Feynman-Vernon影響泛函對熱庫的所有狀態自由度嚴格地求跡,並解析地解出了布朗粒子在平衡態和非平衡態的約化密度矩陣。我們研究了熱庫對布朗粒子的約化哈密頓量和約化分布函數的重整化效應,指出了熱庫與布朗粒子的線性耦合將產生重整化哈密頓量中的粒子對交互作用(pairing interaction)。更重要的是,我們發現了在強耦合下,系統-熱庫耦合將引發熱庫本身的狀態發生不可忽略的變化,必須將熱庫的變化也納入考量才能求得正確的約化分布函數。此外我們也研究了在非平衡態中,布朗粒子的非馬可夫動力學和其內能與熵的時間演化,並從中討論了系統-熱庫耦合對溫度的重整化效應。透過使用正確的重整化哈密頓量和約化分布函數,我們解決了文獻中關於熱容在不同定義下的矛盾結果、以及異常的負熱容等爭議。
In this thesis, we introduce our non-perturbative renormalization theory and apply it to the study of quantum thermodynamics of quantum Brownian motion under strong coupling. Utilizing Gaussian integrals in the coherent state representation and the Feynman-Vernon influence functional, we rigorously trace out all states of the reservoir and analytically solve the reduced density matrix of the Brownian particle in both equilibrium and non-equilibrium states. We examine the renormalization effects of the reservoir on the reduced Hamiltonian and the reduced partition function of the Brownian particle, highlighting how the linear coupling between the reservoir and the Brownian particle induces pairing interactions in the renormalized Hamiltonian. Importantly, we find that in strong coupling, the system-reservoir interaction leads to significant changes in the state of the reservoir itself, necessitating the consideration of these changes to obtain the correct reduced partition function. Furthermore, we study the non-Markovian dynamics of the Brownian particle and the time evolution of its internal energy and entropy in non-equilibrium states, which allowed us to discuss the renormalization effects of the system-reservoir coupling on the temperature. By utilizing the correctly renormalized Hamiltonian and reduced partition function, we resolve discrepancies in the literature regarding the heat capacity under different definitions, as well as the issue of anomalous negative heat capacity.
[1] M. O. Scully, K. R. Chapin, K. E. Dorfman, M. B. Kim, and A. Svidzinsky,“Quantum heat engine power can be increased by noise-induced coherence,” Proc. Natl. Acad. Sci., vol. 108, no. 37, pp. 15097–15100, 2011.
[2] J. Roßnagel, O. Abah, F. Schmidt-Kaler, K. Singer, and E. Lutz, “Nanoscale heat engine beyond the carnot limit,” Phys. Rev. Lett., vol. 112, no. 3, p. 030602, 2014.
[3] C. Bergenfeldt, P. Samuelsson, B. Sothmann, C. Flindt, and M. B¨uttiker, “Hybrid microwave-cavity heat engine,” Phys. Rev. Lett., vol. 112, no. 7, p. 076803, 2014.
[4] K. Zhang, F. Bariani, and P. Meystre, “Quantum optomechanical heat engine,” Phys. Rev. Lett., vol. 112, no. 15, p. 150602, 2014.
[5] R. Uzdin, A. Levy, and R. Kosloff, “Equivalence of quantum heat machines, and quantum-thermodynamic signatures,” Phys. Rev. X, vol. 5, no. 3, p. 031044, 2015.
[6] J. Roßnagel, S. T. Dawkins, K. N. Tolazzi, O. Abah, E. Lutz, F. Schmidt-Kaler, and K. Singer, “A single-atom heat engine,” Science, vol. 352, no. 6283, pp. 325– 329, 2016.
[7] G. Haack and F. Giazotto, “Efficient and tunable aharonov-bohm quantum heat engine,” Phys. Rev. B, vol. 100, no. 23, p. 235442, 2019.
[8] W.-M. Huang and W.-M. Zhang, “Strong-coupling quantum thermodynamics far from equilibrium: Non-markovian transient quantum heat and work,” Phys. Rev. A, vol. 106, no. 3, p. 032607, 2022.
[9] W.-M. Huang and W.-M. Zhang, “Nonperturbative renormalization of quantum thermodynamics from weak to strong couplings,” Phys. Rev. Research, vol. 4, no. 2, p. 023141, 2022.
[10] M. M. Ali, W.-M. Huang, and W.-M. Zhang, “Quantum thermodynamics of single particle systems,” Sci. Rep., vol. 10, no. 1, p. 13500, 2020.
[11] J. Gemmer, M. Michel, and G. Mahler, Quantum thermodynamics: Emergence of thermodynamic behavior within composite quantum systems, vol. 784. Springer, 2009.
[12] R. Kosloff, “Quantum thermodynamics: A dynamical viewpoint,” Entropy, vol. 15, no. 6, pp. 2100–2128, 2013.
[13] J. Millen and A. Xuereb, “Perspective on quantum thermodynamics,” New J. Phys, vol. 18, no. 1, p. 011002, 2016.
[14] S. Vinjanampathy and J. Anders, “Quantum thermodynamics,” Contemp. Phys., vol. 57, no. 4, pp. 545–579, 2016.
[15] W. Dou, M. A. Ochoa, A. Nitzan, and J. E. Subotnik, “Universal approach to quantum thermodynamics in the strong coupling regime,” Phys. Rev. B, vol. 98, no. 13, p. 134306, 2018.
[16] J.-T. Hsiang and B.-L. Hu, “Quantum thermodynamics at strong coupling: operator thermodynamic functions and relations,” Entropy, vol. 20, no. 6, p. 423, 2018.
[17] U. Seifert, “First and second law of thermodynamics at strong coupling,” Phys. Rev. Lett., vol. 116, no. 2, p. 020601, 2016.
[18] C. Jarzynski, “Stochastic and macroscopic thermodynamics of strongly coupled systems,” Phys. Rev. X, vol. 7, no. 1, p. 011008, 2017.
[19] C. Jarzynski, “Equalities and inequalities: Irreversibility and the second law of thermodynamics at the nanoscale,” in Time: Poincar´e Seminar 2010, pp. 145– 172, Springer, 2012.
[20] A. Levy and R. Kosloff, “The local approach to quantum transport may violate the second law of thermodynamics,” Eur. Phys. Lett., vol. 107, no. 2, p. 20004, 2014.
[21] F. Brandao, M. Horodecki, N. Ng, J. Oppenheim, and S. Wehner, “The second laws of quantum thermodynamics,” Proc. Natl. Acad. Sci. USA, vol. 112, no. 11, pp. 3275–3279, 2015.
[22] M. Esposito, M. A. Ochoa, and M. Galperin, “Nature of heat in strongly coupled open quantum systems,” Phys. Rev. B, vol. 92, no. 23, p. 235440, 2015.
[23] P. Talkner, E. Lutz, and P. H¨anggi, “Fluctuation theorems: Work is not an observable,” Phys. Rev. E, vol. 75, no. 5, p. 050102, 2007.
[24] A. Colla and H.-P. Breuer, “Open-system approach to nonequilibrium quantum thermodynamics at arbitrary coupling,” Phys. Rev. A, vol. 105, no. 5, p. 052216, 2022.
[25] M. Wie´sniak, V. Vedral, and ˇC. Brukner, “Heat capacity as an indicator of entanglement,” Phys. Rev. B, vol. 78, no. 6, p. 064108, 2008.
[26] E. Rieper, J. Anders, and V. Vedral, “Entanglement at the quantum phase transition in a harmonic lattice,” New J. Phys., vol. 12, no. 2, p. 025017, 2010.
[27] J.-T. Hsiang and B. Hu, “Distance and coupling dependence of entanglement in the presence of a quantum field,” Phys. Rev. D, vol. 92, no. 12, p. 125026, 2015.
[28] P. H¨anggi and G.-L. Ingold, “Quantum brownian motion and the third law of thermodynamics,” Acta Phys. Pol. B, 2006.
[29] P. H¨anggi, G.-L. Ingold, and P. Talkner, “Finite quantum dissipation: the challenge of obtaining specific heat,” New J. Phys., vol. 10, no. 11, p. 115008, 2008.
[30] G.-L. Ingold, P. H¨anggi, and P. Talkner, “Specific heat anomalies of open quantum systems,” Phys. Rev. E, vol. 79, no. 6, p. 061105, 2009.
[31] R. Adamietz, G.-L. Ingold, and U. Weiss, “Thermodynamic anomalies in the presence of general linear dissipation: from the free particle to the harmonic oscillator,” Eur. Phys. J. B, vol. 87, pp. 1–10, 2014.
[32] B. Spreng, G.-L. Ingold, and U. Weiss, “Anomalies in the specific heat of a free damped particle: the role of the cutoff in the spectral density of the coupling,” Phys. Scr., vol. 2015, no. T165, p. 014028, 2015.
[33] R. O’connell, “Does the third law of thermodynamics hold in the quantum regime?,” J. Stat. Phys., vol. 124, pp. 15–23, 2006.
[34] J.-T. Hsiang, C. H. Chou, Y. Suba¸sı, and B. L. Hu, “Quantum thermodynamics from the nonequilibrium dynamics of open systems: Energy, heat capacity, and the third law,” Phys. Rev. E, vol. 97, no. 1, p. 012135, 2018.
[35] M. Campisi, P. Talkner, and P. H¨anggi, “Fluctuation theorem for arbitrary open quantum systems,” Phys. Rev. Lett., vol. 102, no. 21, p. 210401, 2009.
[36] B. Roux and T. Simonson, “Implicit solvent models,” Biophys. chem., vol. 78, no. 1-2, pp. 1–20, 1999.
[37] T. Rodinger, P. L. Howell, and R. Pom`es, “Calculation of absolute protein-ligand binding free energy using distributed replica sampling,” J. Chem. Phys., vol. 129, no. 15, 2008.
[38] P. Talkner and P. H¨anggi, “Colloquium: Statistical mechanics and thermodynamics at strong coupling: Quantum and classical,” Rev. Mod. Phys., vol. 92, no. 4, p. 041002, 2020.
[39] S. Hilt, B. Thomas, and E. Lutz, “Hamiltonian of mean force for damped quantum systems,” Phys. Rev. E, vol. 84, no. 3, p. 031110, 2011.
[40] F. Binder, L. A. Correa, C. Gogolin, J. Anders, and G. Adesso, “Thermodynamics in the quantum regime,” Fundam. Theor. Phys., vol. 195, pp. 1–2, 2018.
[41] P. Strasberg and M. Esposito, “Measurability of nonequilibrium thermodynamics in terms of the hamiltonian of mean force,” Phys. Rev. E, vol. 101, no. 5, p. 050101, 2020.
[42] G. Timofeev and A. Trushechkin, “Hamiltonian of mean force in the weakcoupling and high-temperature approximations and refined quantum master equations,” Int. J. Mod. Phys. A, vol. 37, no. 20n21, p. 2243021, 2022.
[43] P. C. Burke, G. Nakerst, and M. Haque, “Structure of the hamiltonian of mean force,” arXiv:2311.10427, 2023.
[44] P. Massignan, A. Lampo, J. Wehr, and M. Lewenstein, “Quantum brownian motion with inhomogeneous damping and diffusion,” Phys. Rev. A, vol. 91, no. 3, p. 033627, 2015.
[45] A. Lampo, S. H. Lim, J. Wehr, P. Massignan, and M. Lewenstein, “Lindblad model of quantum brownian motion,” Phys. Rev. A, vol. 94, no. 4, p. 042123, 2016.
[46] Y.-W. Huang and W.-M. Zhang, “Exact master equation for generalized quantum brownian motion with momentum-dependent system-environment couplings,” Phys. Rev. Research, vol. 4, no. 3, p. 033151, 2022.
[47] X. Huang, T. Wang, X. Yi, et al., “Effects of reservoir squeezing on quantum systems and work extraction,” Phys. Rev. E, vol. 86, no. 5, p. 051105, 2012.
[48] J. Roßnagel, O. Abah, F. Schmidt-Kaler, K. Singer, and E. Lutz, “Nanoscale heat engine beyond the carnot limit,” Phys. Rev. Lett., vol. 112, no. 3, p. 030602, 2014.
[49] L. A. Correa, J. P. Palao, D. Alonso, and G. Adesso, “Quantum-enhanced absorption refrigerators,” Sci. Rep, vol. 4, no. 1, p. 3949, 2014.
[50] K. Zhang, F. Bariani, and P. Meystre, “Theory of an optomechanical quantum heat engine,” Phys. Rev. A, vol. 90, no. 2, p. 023819, 2014.
[51] G. Manzano, F. Galve, R. Zambrini, and J. M. Parrondo, “Entropy production and thermodynamic power of the squeezedthermal reservoir,” Phys. Rev. E, vol. 93, no. 5, p. 052120, 2016.
[52] J. Klaers, S. Faelt, A. Imamoglu, and E. Togan, “squeezedthermal reservoirs as a resource for a nanomechanical engine beyond the carnot limit,” Phys. Rev. X, vol. 7, no. 3, p. 031044, 2017.
[53] H. Grabert, U. Weiss, and P. Talkner, “Quantum theory of the damped harmonic oscillator,” Z. Phys. B, vol. 55, pp. 87–94, 1984.
[54] A. Einstein, “¨Uber die von der molekularkinetischen theorie der w¨arme geforderte bewegung von in ruhenden fl¨ussigkeiten suspendierten teilchen,” Annalen der physik, vol. 4, 1905.
[55] A. O. Caldeira and A. J. Leggett, “Path integral approach to quantum brownian motion,” Physica A, vol. 121, no. 3, pp. 587–616, 1983.
[56] R. P. Feynman and F. Vernon Jr, “The theory of a general quantum system interacting with a linear dissipative system,” Ann. Phys., vol. 281, no. 1-2, pp. 547– 607, 2000.
[57] A. Caldeira, H. A. Cerdeira, and R. Ramaswamy, “Limits of weak damping of a quantum harmonic oscillator,” Physical Review A, vol. 40, no. 6, p. 3438, 1989.
[58] W. Unruh and W. H. Zurek, “Reduction of a wave packet in quantum brownian motion,” Physical Review D, vol. 40, no. 4, p. 1071, 1989.
[59] B. L. Hu, J. P. Paz, and Y. Zhang, “Quantum brownian motion in a general environment: Exact master equation with nonlocal dissipation and colored noise,” Phys. Rev. D, vol. 45, no. 8, p. 2843, 1992.
[60] J. Halliwell and T. Yu, “Alternative derivation of the hu-paz-zhang master equation of quantum brownian motion,” Physical Review D, vol. 53, no. 4, p. 2012, 1996.
[61] J. Anglin and S. Habib, “Classical dynamics for linear systems: The case of quantum brownian motion,” Modern Physics Letters A, vol. 11, no. 32n33, pp. 2655– 2662, 1996.
[62] E. Calzetta, A. Roura, and E. Verdaguer, “Master equation for quantum brownian motion derived by stochastic methods,” International Journal of Theoretical Physics, vol. 40, pp. 2317–2332, 2001.
[63] E. Calzetta, A. Roura, and E. Verdaguer, “Stochastic description for open quantum systems,” Physica A: Statistical Mechanics and its Applications, vol. 319, pp. 188–212, 2003.
[64] R. Gilmore, Lie groups, Lie algebras, and some of their applications. Courier Corporation, 2006.
[65] W.-M. Zhang, R. Gilmore, et al., “Coherent states: Theory and some applications,” Rev. Mod. Phys., vol. 62, no. 4, p. 867, 1990.
[66] C.-F. Kam, W.-M. Zhang, and D.-H. Feng, Coherent States: New Insights Into Quantum Mechanics with Applications, vol. 1011. Springer Nature, 2023.
[67] J. F. Corney and P. D. Drummond, “Gaussian quantum operator representation for bosons,” Physical Review A, vol. 68, no. 6, p. 063822, 2003.
[68] S. Sefi and P. Van Loock, “How to decompose arbitrary continuous-variable quantum operations,” Physical review letters, vol. 107, no. 17, p. 170501, 2011.
[69] J. F. Corney and P. D. Drummond, “Gaussian phase-space representations for fermions,” Physical Review B, vol. 73, no. 12, p. 125112, 2006.
[70] J. Corney and P. Drummond, “Gaussian operator bases for correlated fermions,” Journal of Physics A: Mathematical and General, vol. 39, no. 2, p. 269, 2005.
[71] V. M. Budnev, I. Ginzburg, G. V. Meledin, and V. G. Serbo, “The two-photon particle production mechanism. physical problems. applications. equivalent photon approximation,” Physics Reports, vol. 15, no. 4, pp. 181–282, 1975.
[72] R. Gilmore, Lie groups, Lie algebras, and some of their applications. Courier Corporation, 2006.
[73] C. Mehta, “Diagonal coherent-state representation of quantum operators,” Phys. Rev. Lett., vol. 18, no. 18, p. 752, 1967.
[74] F. Hong-Yi, H. Zaidi, and J. R. Klauder, “New approach for calculating the normally ordered form of squeeze operators,” Phys. Rev. D, vol. 35, no. 6, p. 1831, 1987.
[75] L. D. Faddeev, Gauge fields: an introduction to quantum theory. CRC Press, 2018.
[76] R. P. Feynman, A. R. Hibbs, and D. F. Styer, Quantum mechanics and path integrals. Courier Corporation, 2010.
[77] P.-Y. Yang, C.-Y. Lin, and W.-M. Zhang, “Master equation approach to transient quantum transport in nanostructures incorporating initial correlations,” Physical Review B, vol. 92, no. 16, p. 165403, 2015.
[78] W.-M. Zhang, P.-Y. Lo, H.-N. Xiong, M. W.-Y. Tu, and F. Nori, “General nonmarkovian dynamics of open quantum systems,” Physical review letters, vol. 109, no. 17, p. 170402, 2012.
[79] C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Atom-photon interactions: basic processes and applications. John Wiley & Sons, 1998.
[80] C.-Z. Yao, H.-L. Lai, and W.-M. Zhang, “Quantum transport theory of hybrid superconducting systems,” Physical Review B, vol. 108, no. 19, p. 195402, 2023.
[81] M. W. Tu and W.-M. Zhang, “Non-markovian decoherence theory for a doubledot charge qubit,” Physical Review B, vol. 78, no. 23, p. 235311, 2008.
[82] P.-Y. Yang, C.-Y. Lin, and W.-M. Zhang, “Transient current-current correlations and noise spectra,” Physical Review B, vol. 89, no. 11, p. 115411, 2014.
[83] M. W.-Y. Tu, M.-T. Lee, and W.-M. Zhang, “Exact master equation and nonmarkovian decoherence for quantum dot quantum computing,” Quantum Information Processing, vol. 8, pp. 631–646, 2009.
[84] H.-N. Xiong, W.-M. Zhang, X. Wang, and M.-H. Wu, “Exact non-markovian cavity dynamics strongly coupled to a reservoir,” Physical Review A, vol. 82, no. 1, p. 012105, 2010.
[85] M.-H. Wu, C. U. Lei, W.-M. Zhang, and H.-N. Xiong, “Non-markovian dynamics of a microcavity coupled to a waveguide in photonic crystals,” Optics Express, vol. 18, no. 17, pp. 18407–18418, 2010.
[86] H.-T. Tan and W.-M. Zhang, “Non-markovian dynamics of an open quantum system with initial system-reservoir correlations: A nanocavity coupled to a coupledresonator optical waveguide,” Physical Review A, vol. 83, no. 3, p. 032102, 2011.
[87] H.-L. Lai, P.-Y. Yang, Y.-W. Huang, and W.-M. Zhang, “Exact master equation and non-markovian decoherence dynamics of majorana zero modes under gateinduced charge fluctuations,” Physical Review B, vol. 97, no. 5, p. 054508, 2018.
[88] Y.-W. Huang, P.-Y. Yang, and W.-M. Zhang, “Quantum theory of dissipative topological systems,” Physical Review B, vol. 102, no. 16, p. 165116, 2020.
[89] C.-Z. Yao and W.-M. Zhang, “Probing topological states through the exact nonmarkovian decoherence dynamics of a spin coupled to a spin bath in the real-time domain,” Physical Review B, vol. 102, no. 3, p. 035133, 2020.
[90] F.-L. Xiong and W.-M. Zhang, “Exact dynamics and thermalization of open quantum systems coupled to reservoirs through particle exchanges,” Physical Review A, vol. 102, no. 2, p. 022215, 2020.
[91] H.-N. Xiong, P.-Y. Lo, W.-M. Zhang, D. H. Feng, and F. Nori, “Non-markovian complexity in the quantum-to-classical transition,” Scientific reports, vol. 5, no. 1, p. 13353, 2015.
[92] H. Grabert, P. Schramm, and G.-L. Ingold, “Quantum brownian motion: The functional integral approach,” Phys. Rep., vol. 168, no. 3, pp. 115–207, 1988.
[93] S. Maniscalco, J. Piilo, F. Intravaia, F. Petruccione, and A. Messina, “Simulating quantum brownian motion with single trapped ions,” Phys. Rev. A, vol. 69, no. 5, p. 052101, 2004.
[94] S. Maniscalco, J. Piilo, F. Intravaia, F. Petruccione, and A. Messina, “Lindbladand non-lindblad-type dynamics of a quantum brownian particle,” Phys. Rev. A, vol. 70, no. 3, p. 032113, 2004.
[95] P. Massignan, A. Lampo, J. Wehr, and M. Lewenstein, “Quantum brownian motion with inhomogeneous damping and diffusion,” Phys. Rev. A, vol. 91, no. 3, p. 033627, 2015.
[96] G. S. Engel, T. R. Calhoun, E. L. Read, T.-K. Ahn, T. Manˇcal, Y.-C. Cheng, R. E. Blankenship, and G. R. Fleming, “Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems,” Nature, vol. 446, no. 7137, pp. 782–786, 2007.
[97] G. D. Scholes, “Coherence in photosynthesis,” Nature Physics, vol. 7, no. 6, pp. 448–449, 2011.
[98] C. Creatore, M. A. Parker, S. Emmott, and A. W. Chin, “Efficient biologically inspired photocell enhanced by delocalized quantum states,” Physical review letters, vol. 111, no. 25, p. 253601, 2013.
[99] K. E. Dorfman, D. V. Voronine, S. Mukamel, and M. O. Scully, “Photosynthetic reaction center as a quantum heat engine,” Proceedings of the National Academy of Sciences, vol. 110, no. 8, pp. 2746–2751, 2013.
[100] H.-G. Duan, V. I. Prokhorenko, R. J. Cogdell, K. Ashraf, A. L. Stevens, M. Thorwart, and R. D. Miller, “Nature does not rely on long-lived electronic quantum coherence for photosynthetic energy transfer,” Proceedings of the National Academy of Sciences, vol. 114, no. 32, pp. 8493–8498, 2017.
[101] J. Von Neumann, Mathematische grundlagen der quantenmechanik, vol. 38. Springer-Verlag, 2013.
[102] A. Schiller and S. Hershfield, “Toulouse limit for the nonequilibrium kondo impurity: Currents, noise spectra, and magnetic properties,” Physical Review B, vol. 58, no. 22, p. 14978, 1998.