簡易檢索 / 詳目顯示

研究生: 吳汴杭
Wu, Pien-Hang
論文名稱: 利用交錯微管道調控濃度比例與混合之研究
A Study of Controlling Concentration and Mixing by Using Tangentially Crossing Micro Channel
指導教授: 李定智
Lee, Denz
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2011
畢業學年度: 100
語文別: 中文
論文頁數: 59
中文關鍵詞: 三維交錯微管道濃度比例流阻微混合器
外文關鍵詞: three dimensional crossing micro channel, concentration ratio, flow resistance, micro mixer
相關次數: 點閱:108下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 調配試劑的濃度比例和試劑的混合是生化實驗中兩個重要的步驟,調配試劑的濃度並使試劑混合均勻在藥物調配、樣品稀釋、化合物合成等實驗中都是重要的關鍵。本研究的目的是在微管道晶片中整合調配試劑濃度比例與試劑混合兩個過程。
    根據過去研究發現,可藉由改變三維交錯管道交錯窗口之後的流阻比調控出口濃度比例;本研究設計一個三維交錯管道結合混合器的設計,藉由改變交錯窗口之後的流阻比產生預期的出口濃度比例,同時並提升混合均勻程度。
    本研究由CFD-RC數值模擬軟體計算流場和流體混合效率。藉由數值模擬結果,確定本研究使用的管道外型並進行實驗。本研究利用影像分析軟體ImageJ分析實驗結果的光度值量測出口濃度比例。最後將實驗結果與模擬結果比對,兩者結果相符,確認了實驗符合數值模擬結果。
    為了更進一步探討本研究結果是可行的,將本研究結果與過去研究比較,結果發現,管道流阻比與出口濃度比例的關係與過去研究推導的「濃度比例公式」相符,最後本研究探討了出口濃度比例與出口位置的關係,在不受製程條件的限制下,本研究所使用的管道外型可產生任何介於0~1的出口濃度比例,並藉由出口前混合器的設計提升混合指數。
    本研究證明三維交錯微管道結合混合器的簡單外型設計可產生任何介於0~1之間的濃度比例。本研究的設計概念整合流體輸送、濃度比例控制、流體混合於一個外型簡單的管道晶片中實現。

    Controlling the concentration ratio of reagent and the mixing of solution are two important processes in biochemical experiments. Controlling desired reagent ratio of solution and making it well-uniform are the keys in drug allocation, sample dilution, synthesis reagents and so on. The purpose of this study is to integrate controlling the concentration ratio and the mixing functions in a micro channel chip.
    This study employs the three dimensional tangentially crossing micro channel. In the previous study, the flow channel resistance after the crossing window can affect the concentration ratio. This research devises a three dimensional tangentially crossing micro channel with a mixer. It is possible by controlling resistance of the branch channel to achieve the desired concentration ratio in the expected outlets. In addition, the outlet solution will be uniformly mixed.
    The study utilized simulation software CFD-RC to calculate the flow and mixing characteristics. According to the simulation result, the result confirmed the configuration of PDMS micro channel chip for experiments. This study used software ImageJ to analysis the grey scale of the digital image to evaluate the concentration ratio .The results of experiments are in agreement with the numerical simulation.
    To validate the design of the channel , this research compared the results with the previous research . It shows that the relation of concentration ratio and flow resistance is matched with the “concentration ratio formula” which was derived from the previous study.Finally, this research discussed the relation between the outlet location and the concentration ratio. Except the fabrication limit, this micro channel chip can generate any concentration ratio between 0 to 1.
    This study demonstrated that three dimensional tangentially crossing channel combined mixer can generate any concentration ratio by simple configuration. This micro device integrates the functions of fluid transportation, reagent solution preparation, direction control and mixing in a single chip.

    摘要 I ABSTRACT II 誌謝 IV 目錄 V 表目錄 VIII 圖目錄 IX 符號說明 XI 第一章 緒論 1 1-1 前言 1 1-2 研究動機 1 1-3 研究目的 2 1-4 文獻回顧 3 1-4-1 三維交錯微管道特性 3 1-4-2 微混合器介紹 3 1-4-3 利用微管道調控濃度比例之研究 4 第二章 理論基礎與管道設計 5 2-1 理論基礎 5 2-1-1 流體阻力公式 5 2-1-2 轉向率與濃度比例的關係 8 2-1-3 Mixing Index 混合指數 10 2-2 管道設計 11 2-2-1 AR = 1的管道 11 2-2-2 AR = 0.4的微混合器 11 2-2-3結合混合器的三維交錯管道設計 11 2-3 墨水濃度與光度的關係 12 第三章 實驗與模擬系統設定 14 3-1 黃光微影製程 14 3-1-1管道母模製作 14 3-1-2 PDMS 管道製作 17 3-1-3 管道接合 18 3-2 實驗系統架構 18 3-2-1針筒幫浦(SYRINGE PUMP)與微量針筒元件 18 3-2-2光學偵測硬體及影像後處理軟體 18 3-3 實驗方法 19 3-3-1 濃度比例與光度的關係 19 3-3-2 ImageJ 影像後處理 19 3-4 模擬系統架構 19 3-4-1統御方程式 20 3-4-2模型建立與模擬條件設定 21 3-4-3 模擬結果後處理 22 第四章 結果與討論 23 4-1 管道數值分析結果 23 4-2 濃度比例公式比對實驗結果與模擬結果 25 4-3 出口濃度比例與管道出口位置的關係 27 第五章 結論 30 5-1 試劑液 30 5-2 濃度比例公式、模擬與實驗之相互驗證 30 5-3 出口濃度比例與出口位置的關係 31 5-4 未來展望 31 參考文獻 33 自述 59

    1.Feynman R.P. “There's plenty of room at the bottom,” Engineering and Science, 1960. 23(5): p. 22-36.
    2.Talary M.S., Burt J.P., Pethig R. “Future trends in diagnosis using laboratory-on-a-chip technologies,” Parasitology, 1998. 117: p.S191-S203.
    3.Suzuki, H. “Development of chaotic miro-mixer using magnetic beads,” Ph.D. thesis, Tokyo University, Tokyo, Japan,2003
    4.Stone H.A., Stroock A.D., Ajdari A. “Engineering flows in small devices. Annual Review of Fluid Mechanics, “2004. 36: p. 381-411.
    5.陳佑慈. “三維交錯微管道中流場分析與應用. “國立成功大學航空太空工程學系博士論文, 2009.
    6.Lee D., Chen Y.T., Bai.T.Y. “A study of flows in tangentially crossing micro-channels,”Microfluidics and Nanofluidics, 2009. 7(2): p. 169-179.
    7.江支佑. “利用交錯微管道調控混合比例之研究. “國立成功大學航空太空工程研究所碩士論文, 2009.
    8.Nguyen N.T., Wereley S.T. " Fundamentals and applications of microfluidics ," 2002: Artech House Publishers.
    9.Nguyen N.T., Wu Z. “Micromixers—a review, “Journal of Micromechanics and Microengineering, 2005. 15(2): p.R1-R16.
    10.Munir A.,Wang J.,Zhu Z.,Zhou H.S.”Mathematical Modeling and Analysis of a magnetic nanoparticle-enhanced mixing in a microfluidic system using time-dependent magnetic field, “Nanotechnology. TNANO, (99): p. 953-961
    11.Glasgow I.,Aubry N. “Enhancement of microfluidic mixing using time pulsing,”Lab on a Chip, 2003. 3(2): p. 114-120.
    12.Deval J., Tabeling P., Ho C. M.” A dielectrophoretic chaotic mixer,Micro Electro Mechanical Systems,” 2002. The Fifteenth IEEE International Conference
    13.Schonfeld F., Hessel V., Hofmann C. “An optimised split-and-recombine micro-mixer with uniform chaotic mixing,”Lab on a Chip, 2004. 4(1): p.65-69.
    14.Stroock A.D.,Dertinger S.K.W.,Ajdari A.,Mezic I.,Stone H.A.,Whitesides G.M. “Chaotic Mixer for Microchannels,” Science, 2002. 295(5555): p.647.
    15.Lee D.,Chen Y.T. “Mixing in tangentially crossing microchannels,” AIChE Journal, 2011. 57(3): p. 571-580.
    16.Lee D.,Lo P.H.”On the enhancement of mixing in tangentially crossing micro-channels,” Chemical Engineering Journal, 2012. Accepted.DOI:10.1016/j.cej.2011.11.046
    17.Yamada M., Hirano T., Yasuda M., Seki M. “A microfluidic flow distributor generating stepwise concentrations for high-throughput biochemical processing,” Lab on a Chip,2006,179-194
    18.Lee K., Kim C.,Kim Y.,Jung K.,Ahn B.,Kang J.Y.,Oh K.W. “2-layer based microfluidic concentration generator by hybrid serial and volumetric dilutions,” Biomedical Microdevices ,2010,12,297-309
    19.Yamada M. , Seki M. “Hydrodynamic filtration for on-chip particle concentration and classification utilizing microfluidics,” Lab on A Chip , 5,1233-1239,2005
    20.White, F.M. “Viscous Fluid Flow,”2006: McGraw-Hill.
    21.Earle R.,Earle M..“Fundamentals of Food Reaction Technology,“2003 : Royal Society of Chemistry
    22.Engler M.,Kockmann N.,Kiefer T.,Woias P.”Numerical and experimental investigations on liquid mixing in static micromixers, “Chemical Engineering Journal, 2004. 101(1-3): p. 315-322.
    23.Chen J.M., Horng T.L., Tan W.Y. “Analysis and measurements of mixing in pressure-driven microchannel flow,” Microfluidics and Nanofluidics, 2006. 2(6): p.455-469.
    24.Munson M.S., Yager P. “Simple quantitative optical method for monitoring the extent of mixing applied to a novel microfluidic mixer, “Analytica Chimica Acta,2004.507(1):p.63-71.
    25.Koch M.,Witt H.,Evans A.G.R.,Brunnschweiler A.”Improved characterization technique for micromixers, “Journal of Micromechanics and Microengineering, 1999. 9: p.156-158.
    26.“Data sheet for NANO TM SU-8 negative tone photoresists Formulations 50-100, “MicroChem. Corp.
    27.Shaw M.,Nawrocki D.,Hurditch R.,Johnson D. “Improving the process capability of SU-8. Microsystem Technologies, “2003. 10(1): p. 1-6.
    28.Xiao H.”Introduction to semiconductor manufacturing technology,” 2001: Prentice Hall.

    下載圖示 校內:2013-08-25公開
    校外:2013-08-25公開
    QR CODE