| 研究生: |
王榆翔 Wang, Yu-Xiang |
|---|---|
| 論文名稱: |
應用雷射箔材列印技術於無裂紋6061鋁合金件之製造與研究 Fabrication of crack-free 6061 aluminum alloy parts using laser-foil-printing additive manufacturing processes |
| 指導教授: |
洪嘉宏
Hung, Chia-Hung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 英文 |
| 論文頁數: | 59 |
| 中文關鍵詞: | 增材製造 、6061鋁合金 、雷射箔材列印技術 、凝固裂紋 、晶粒結構 |
| 外文關鍵詞: | additive manufacturing, 6061 aluminum alloy, laser-foil-printing process, solidification crack, grain structure |
| 相關次數: | 點閱:63 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本文中,通過雷射金屬箔材列印技術 (LFP) 成功製造出無裂痕6061鋁合金件。並根據雷射作用時間 (TL) 以及線能量密度 (LED) 對製程參數進行優化。在700 W的雷射功率下進行單道實驗,以研究掃描速度對熔池形成的影響。當掃描速度達到130 mm/s時,裂紋形成。EBSD圖像顯示,由於熱輸入量減少,熔池邊界的晶粒尺寸減小。當掃描速度低於100 mm/s時,由於輸入能量較高,熔池截面會出現氣孔以及熔池凹陷的缺陷。後續使用700 W雷射功率以及100 mm/s掃描速度的優化參數進行多層零件。四個LFP零件拉伸試樣的平均極限拉伸強度 (UTS) 為246 MPa,平均伸長率為8%。斷裂面顯示出韌性斷裂特有的破裂面、滑移面、微孔洞以及分離的柱狀晶粒。並根據XRD和EBSD的結果證明 (200) 峰值代表柱狀晶粒的存在。
除此之外,本文也研究預熱處理於6061鋁合金樣品上晶粒和表面波紋結構的演變,以瞭解預熱如何影響微觀結構。為評估預熱溫度對於熔池形成的影響,文中建立了一個三維有限元素模型。模擬結果表明,隨著預熱溫度的升高,凝固速率降低,導致冷卻時間延長。EBSD結果顯示了晶粒大小的變化,當預熱溫度低於450˚C時,平均晶粒大小由75.6 μm增加至136.8 μm。同時,(001) 取向強度的增加顯示柱狀晶粒生長的特徵。然而,當樣品預熱溫度高於450˚C時,平均晶粒大小減小至105.7 μm,(111) 取向的出現指出在加工過程中發生了再結晶。此外,凝固速率的降低延長了冷卻時間,導致表面粗糙度 (Sa) 從21.7 μm降至5.2 μm,熔池表面上的波紋也隨著預熱溫度的升高而減少。XRD結果進一步證實了柱狀晶粒的增加和再結晶的存在,與EBSD結果相符。
In this study, crack-free aluminum alloy 6061 parts were successfully fabricated using the laser foil printing (LFP) process. Parametric optimization of the processing map was conducted based on laser interaction time (TL) and line energy density (LED). Single-track experiments were performed at a laser power of 700 W to investigate the influence of scanning speed. Cracks formed when the scanning speed reached 130 mm/s. Electron backscattered diffraction (EBSD) patterns indicated a reduction in grain size along the melt pool boundary due to a decrease in heat input. At scanning speeds below 100 mm/s, pores and cavities emerged due to the high energy input. Subsequently, multilayer parts were fabricated using the optimized parameters of 700 W laser power and a scanning speed of 100 mm/s. Four tensile specimens of the LFP parts exhibited an average ultimate tensile stress of 246 MPa and an elongation of 8%. The fracture surfaces revealed dimples, cleavages, slip regimes, and disbanded columnar grains characteristic of ductile fracture. X-ray diffraction (XRD) and EBSD results indicated the presence of columnar grains with a (200) peak.
The evolution of the grain and ripple structures on the preheated AA6061 samples was also investigated to understand how preheating affects the microstructure. A three-dimensional FEM model was constructed to assess the effects of preheating temperature. Simulation results indicate that as the preheating temperature increases, the solidification rate decreases, leading to an increase in cooling time. The EBSD results reveal an evolution of average grain size, which increases from 75.6 μm to 136.8 μm when the preheating temperature is below 450˚C. The concomitant increase in the (001) orientation is characteristic of columnar grain growth. However, when the sample is preheated above 450˚C, the average grain size decreases to 105.7 μm, and the appearance of the (111) orientation indicate that recrystallization occurred during processing. The reduction in the solidification rate increases the cooling time, leading to an improvement in surface roughness (Sa) from 21.7 μm to 5.2 μm. Ripples on melt pool surface were also found to be reduced with increasing preheating temperature. XRD results further confirm the increased columnar grains and the presence of recrystallization, aligning with the EBSD results.
[1]C. H. Hung, W. T. Chen, M. H. Sehhat, M. C. Leu, “The effect of laser welding modes on mechanical properties and microstructure of 304L stainless steel parts fabricated by laser-foil-printing additive manufacturing.” The International Journal of Advanced Manufacturing Technology, vol. 112, p. 867-877, 2021.
[2]C. H. Hung, Y. Li, A. Sutton, W. T. Chen, X. Gong, H. Pan, H. L. Tsai, Ming C. Leu, “Aluminum Parts Fabricated by Laser-Foil-Printing Additive Manufacturing: Processing, Microstructure, and Mechanical Properties.” Materials, vol. 13, no. 2, p. 414, 2020.
[3]Y. Shen, Y. Li, C. Chen, H. L. Tsai, “3D printing of large, complex metallic glass structures.” Materials and Design, vol. 117, p. 213-222, 2017.
[4]M. J. Cieslak, P. W. Fuerschbach, “On the Weldability, Composition, and Hardness of Pulsed and Continuous Nd:YAG Laser Welds in Aluminum Alloys 6061,5456, and 5086.” Metallurgical Transactions B, vol. 19B, p. 319-329, 1988.
[5]Z. H. Hu, X. J. Nie, Y. Qi, H. Zhang, H. H. Zhu, “Cracking criterion for high strength Al–Cu alloys fabricated by selective laser melting.” Additive Manufacturing, vol. 37, p. 101709, 2021.
[6]R. L. Bradford, L. Cao, D. Klosterman, F. Herman, L. Forman, C. Browning, “A metal–metal powder formulation approach for laser additive manufacturing of difficult-to-print high-strength aluminum alloys.” Materials Letters, vol. 300, p. 130113, 2021.
[7]S. Z. Uddin, L. E. Murr, C. A. Terrazas, P. Morton, D. A. Roberson, R. B. Wicker, “Processing and characterization of crack-free aluminum 6061 using high-temperature heating in laser powder bed fusion additive manufacturing.” Additive Manufacturing, vol. 22, p. 405-415, 2018.
[8]A. Mehta, L. Zhou, T. Huynh, S. Park, H. Hyer, S. Song, Y. Bai, D. D. Imholte, N. E. Woolstenhulme, D. M. Wachs, Y. Sohn, “Additive manufacturing and mechanical properties of the dense and crack free Zr-modified aluminum alloy 6061 fabricated by the laser-powder bed fusion.” Additive Manufacturing, vol. 41, p. 101966, 2021.
[9]N. Qbau, N.D. Nam, N.X. Ca, N.T. Hien, “The crack healing effect of scandium in aluminum alloys during laser additive manufacturing.” Journal of Manufacturing Processes, vol. 50, p. 241-246, 2020.
[10]J. Zhang, J. Gao, B. Song, L. Zhang, C. Han, C. Cai, K. Zhou, Y. Shi, “A novel crack-free Ti-modified Al-Cu-Mg alloy designed for selective laser melting.” Additive Manufacturing, vol. 38, p. 101829, 2021.
[11]E. Louvis, P. Fox, C. J. Sutcliffe, “Selective laser melting of aluminium components.” Journal of Materials Processing Technology, vol. 211, no. 2, p. 275-284, 2011.
[12]A. El-Batahgy, M. Kutsuna, “Laser BeamWelding of AA5052, AA5083, and AA6061 Aluminum Alloys.” Advances in Materials Science and Engineering, vol. 2009, p. 974182, 2009.
[13]H. Ramiarison, N. Barka, C. Pilcher, E. Stiles, G. Larrimore, S. Amira, “Weldability improvement by wobbling technique in high power density laser welding of two aluminum alloys: Al-5052 and Al-6061.” Journal of Laser Applications, vol. 33, no. 3, p.032015, 2021.
[14]R. Riva, R. H. M. Siqueira, M. S. F. Lima, “Crack-free autogeneous one-sided laser welding of a 6013 aluminum alloy T-joint for aircraft applications.” Lasers in Manufacturing Conference 2015, Proceedings of LIM, 2015.
[15]D. Buchbinder, W. Meiners, N. Pirch, K. Wissenbach, J. Schrage, “Investigation on reducing distortion by preheating during manufacture of aluminum components using selective laser melting.” Journal of Laser Applications, vol. 26, no. 1, p. 012004, 2014.
[16]H. Ebrahimzadeh, H. Farhangi, S. A. A. A. Mousavi, A. Ghahramani, “Microstructural analyses of aluminum–magnesium–silicon alloys welded by pulsed Nd: YAG laser welding.” International Journal of Minerals, Metallurgy and Materials, vol. 27, no. 5, p. 660-668, 2020.
[17]Q. Chu, R. Bai, H. Jian, Z. Lei, N. Hu, C. Yan, “Microstructure, texture and mechanical properties of 6061 aluminum laser beam welded joints.” Materials Characterization, vol. 137, p. 269-276, 2018.
[18]M. Chludzinski, R. E. d. Santos, C. Churiaque, M. Ortega‑Iguña, J. M. Sánchez‑Amaya, “Effect of process parameters on pulsed laser welding of AA5083 alloy using response surface methodology and pulse shape variation.” The International Journal of Advanced Manufacturing Technology, vol. 120, p. 4635-4646, 2020.
[19]H. D. Joghan, M. Hahn, A. E. Tekkaya, “Effect of preheating during laser metal deposition on the properties of laminated bending dies.” The International Journal of Advanced Manufacturing Technology, vol. 125, p. 157-168, 2022.
[20]D. Zhang, P. Zhang, Z. Liu, Z. Feng, C. Wang, Y. Guo, “Thermofluid field of molten pool and its effects during selective laser melting (SLM) of Inconel 718 alloy.” Additive Manufacturing, vol. 21, p. 567-578, 2018.
[21]Z. Wang, T. A. Palmer, A. M. Beese, “Effect of processing parameters on microstructure and tensile properties of austenitic stainless steel 304L made by directed energy deposition additive manufacturing.” Acta Materialia, vol. 110, p. 226-235, 2016.
[22]H. Zhao, T. DebRoy, “Macroporosity free aluminum alloy weldments through numerical simulation of keyhole mode laser welding.” Journal of Applied physics, vol. 93, no. 12, p. 10089-10096, 2003.
[23]Y. Luo, X. Tang, F. Lu, Q. Chen, H. Cui, “Effect of subatmospheric pressure on plasma plume in fiber laser welding.” Journal of Materials Processing Technology, vol. 215, p. 219-224, 2015.
[24]H. Ma, G. Qin, L. Wang, X. Meng, L. Chen, “Effects of preheat treatment on microstructure evolution and properties of brazed-fusion welded joint of aluminum alloy to steel.” Materials and Design, vol. 90, p. 330-339, 2016.
[25]J. Rodríguez-Salinas, M. B. Hernández, L. G. Cruz, O. Martínez-Romero, N. A. Ulloa-Castillo, A. Elías-Zúñiga, “Enhancing Electrical and Thermal Properties of Al6061 Parts by Electrophoresis Deposition of Multi-Walled Carbon Nanotubes.” Coatings, vol. 10, no. 7, p. 656, 2020.
[26]J. S. Wang, C. C. Hsieh, C. M. Lin, C. W. Kuo, W. Wu, “Texture Evolution and Residual Stress Relaxation in a Cold-Rolled Al-Mg-Si-Cu Alloy Using Vibratory Stress Relief Technique.” Metallurgical and Materials Transactions A, vol .44, p. 806-818, 2013.
[27]Q. Chu, R. Baic, H. Jian, Z. Lei, N. Hu, C. Yan, “Microstructure, texture and mechanical properties of 6061 aluminum laser beam welded joints.” Materials Characterization, vol. 137, p. 269-276, 2018.
[28]Z. Gan, Y. Lian, S. E. Lin, K. K. Jones, W. K. Liu, G. J. Wagner, “Benchmark Study of Thermal Behavior, Surface Topography, and Dendritic Microstructure in Selective Laser Melting of Inconel 625.” Integrating Materials and Manufacturing Innovation, vol. 8, p. 178-193, 2019.
[29]N. K. Yusuf, M. A. Lajis, M. I. Daud, M. Z. Noh, “Effect of Operating Temperature on Direct Recycling Aluminium Chips (AA6061) in Hot Press Forging Process.”Applied Mechanics and Materials, vol. 315, p. 728-732, 2013.
[30]J. Wang, X. Chen, L. Yang, G. Zhang, “Effect of preheat & post-weld heat treatment on the microstructure and mechanical properties of 6061-T6 aluminum alloy welded sheets.” Materials Science & Engineering A, vol. 841, p. 143081, 2022.
[31]W. C. Liu, Z. Li, C.-S. Man, “Effect of heating rate on the microstructure and texture of continuous cast AA 3105 aluminum alloy.” Materials Science and Engineering A, vol. 478, p. 173-180, 2008.
[32]E. Hossain, F. Hassan, S. A. A. A. Mousavi, A. Ghahramani, “Microstructural analyses of aluminum-magnesium-silicon alloys welded by pulsed Nd: YAG laser welding.” International Journal of Minerals, Metallurgy and Materials, vol. 27, p. 660-668, 2020.
[33]Y. Li, Y. Shen, M. C. Leu, H. L. Tsai, “Building Zr-based metallic glass part on Ti-6Al-4V substrate by laser-foil-printing additive manufacturing.” Acta Materialia, vol. 144, p. 810-821, 2018.
[34]Y. Li, Y. Shen, C. H. Hung, M. C. Leu, H. L. Tsai, “Additive manufacturing of Zr-based metallic glass structures on 304 stainless steel substrates via V/Ti/Zr intermediate layers.” Materials Science & Engineering A, vol. 729, p. 185-195, 2018.
校內:2029-01-15公開