| 研究生: |
林志峯 Lin, Chih-Feng |
|---|---|
| 論文名稱: |
利用光譜擬合方法擷取組織假體於近紅外光波段之光學參數 Investigation of spectral fitting method for extracting optical properties of tissue phantoms at NIR range |
| 指導教授: |
曾盛豪
Tseng, Sheng-Hao |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 61 |
| 中文關鍵詞: | 光學特性 、多距離演算法 、多波長演算法 、光學特性 |
| 外文關鍵詞: | Optical properties, Multi-Distance method, Multi-Wavelength method |
| 相關次數: | 點閱:45 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
乳癌在近幾年已經成為台灣地區女性主要的死亡原因,因此,乳癌的早期診斷以及治療已經成為一個重要的課題。故我們希望找到快速偵測乳房組織參數的方法。在生醫組織光學中,漫反射光譜系統(DRS)可以透過快速且非侵入式的方式量化體內組織的成分,DRS可以測量組織假體在近紅外光波段下的吸收係數和散射係數。
因此,本文主要為利用DRS的光學方法獲得液態假體光譜並且分析其參數。首先會利用DRS量測液態假體在500nm~1000nm波段的反射光譜圖,最後,利用多距離演算法和多波長演算法,對光譜圖進行反算並且比較兩種演算法所得到的吸收係數和散射係數。液態假體所選擇的吸收係數和散射係數範圍為正常乳房組織和病變乳房組織,其目的為希望未來可以發展出一套非侵入式且簡單亦便宜的系統,以便未來可以量測乳房並定量組成濃度。
研究結果為多距離演算法和多波長演算法所得到的光學參數並沒有太大之差異,皆可以透過這兩種演算法得到光學參數,且未來亦可以用多波長演算法量測非均質組織的情況淺層腫瘤組織所造成的光學性質變化。
In this thesis, we demonstrate the use of optical method, diffuse reflectance spectroscpoy (DRS), and we will the obtain spectrum of liquid phantoms from DRS, to investigate physiological parameters of liquid phantoms. First, we will obtain reflectance of phantoms at the range of 500nm to 1000nm. Further we will compare two spectral fitting methods of DRS in measuring biological optical properties, one is Multi-Wavelength method and another is Multi-Distance method. The liquid phantoms are used to measure the absorption and scattering coefficient under the range of normal and tumorous breast tissue by these two spectral fitting methods, and to compare both effect. The purpose is to construct a non-invasive, cheaper and simple optical system, and the system can quantify the chromophore concentrations of breast tissue in the future.
[1] Health Promotion Administration, Ministry of Health and Welfare website:
http://www.hpa.gov.tw/BHPNet/English/Index.aspx
[2] N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, "Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm," Journal of Physics D: Applied Physics 38, 2543 (2005).
[3] I. S. Saidi, S. L. Jacques, and F. K. Tittel, "Mie and Rayleigh modeling of visible-light scattering in neonatal skin," Appl. Opt. 34, 7410-7418 (1995).
[4] E. Salomatina, B. Jiang, J. Novak, and A. N. Yaroslavsky, "Optical properties of
normal and cancerous human skin in the visible and near-infrared spectralrange,"
Journal of Biomedical Optics 11, 064026-064029 (2006).
[5] T. L. Troy, and S. N. Thennadil, "Optical properties of human skin in the near
infrared wavelength range of 1000 to 2200 nm," Journal of Biomedical Optics 6,
167-176 (2001).
[6] R. Marchesini, C. Clemente, E. Pignoli, and M. Brambilla, "Optical properties of
in vitro epidermis and their possible relationship with optical properties of in vivo skin," Journal of Photochemistry and Photobiology B: Biology 16, 127-140 (1992).
[7] C. E. Elwell, M. Cope, A. D. Edwards, J. S. Wyatt, D. T. Delpy, and E. O. Reynolds "Quantitative broadband near-infrared spectroscopy of tissue-simulating phantoms containing erythrocytes." Journal of Applied Physiology 77, 2753-2760 (1994).
[8] Michael G. Nichols, E. L. H., and Thomas H. Foster. "Design and testing of a white-light, steady-state diffuse reflectance spectrometer for determination of optical properties of highly scattering systems." Optical Society of America 93-104(1997)
[9] Alwin Kienle, L. L., Michael S. Patterson, Raimund Hibst, Rudolf Steiner, and a. B. C. Wilson. "Spatially resolved absolute diffuse reflectance measurements for noninvasive determination of the optical scattering and absorption coefficients of biological tissue." Optical Society of America: 2304-2314(1996)
[10] Thomas J. Farrell, M. S. P., and Brian Wilson. "A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo." American Association of Physicists in Medicine: 879-888(1992).
[11] Matcher S.J, Kirkpatrick P, Nahid K, Cope M and Delpy D.T, “Absolute quantification methods in tissue near infrared spectroscopy.” Proc. SPIE., vol. 2389: pp.486-495(1993)
[12] Nissilä I, Hebden J.C, Jennions D, Heino J, Schweiger M, Kotilahti K,Noponen T, Gibson A, Järvenpää S, Lipiäinen L and Katila T, “Comparison between a time-domain and a frequency-domain system for optical tomography.” J. Biomed. Opt., vol 11
[13] Grosenick D, Wabnitz H, Rinneberg H.H, Moesta K.T and Schlag P.M, “Development of a time-domain optical mammograph and first in vivo applications.” Appl. Opt., vol 38:2927-2943(1999).
[14] Taroni P, Pifferi A, Salvagnini E, Spinelli L, Torricelli A and Cubeddu R, “Seven-wavelength time-resolved optical mammography extending beyond 1000 nm for breast collagen quantification.” OPTICS EXPRESS, vol. 17, no.18(2009).
[15] Taroni P, Pifferi A, Quarto G, Spinelli L, Torricelli A, Abbate F, Villa A, Balestreri N, Menna S, Cassano E and Cubeddu R, “Noninvasive assessment of breast cancer risk using time-resolved diffuse optical spectroscopy.” J. Biomed. Opt., vol.15(2010).
[16] Taroni P, Comelli D, Farina A and Pifferi A, “Time-resolved diffuse optical spectroscopy of small tissue samples.” OPTICS EXPRESS, vol. 15, no.16(2007).
[17] Torricelli A, Pifferi A, Taroni P, Giambattistelli E, and Cubeddu R, “In vivo optical characterization of human tissues from 610 to 1010 nm, by time-resolved reflectance spectroscopy.” Phys. Med. Biol., vol. 46, no. 8(2001).
[18] Patterson M.S, Moulton J.D, Wilson B.C, Berndt K.W and Lakowicz J.R, “Frequency-domain reflectance for determination of the scattering and absorption properties of tissue.” Appl. OPT., vol. 30: 4474-4476(1991).
[19] Fishkin J.B, So P.T.C, Cerussi A.E, Fantini S, Franceschini M.A and Gratton E, ”Frequency-domain method for measuring spectral properties in multiple-scattering media: methemoglobin absorption spectrum in a tissuelike phantom.” Appl. Opt., vol. 34:1143-1155(1995).
[20] Duncan A, Whitlock T.L, Cope M and Delpy D.T, “A multiwavelength, wideband, intensity modulated optical spectrometer for near infrared spectroscopy and imaging.” Proc. SPIE: 248-257(1888).
[21] Tromberg B.J, Coquoz1 O, Fishkin J.B, Pham T, Anderson E.R, Butler J, Cahn M, Gross J.D, Venugopalan V and Pham D, “Non–invasive measurements of breast tissue optical properties using frequency–domain photon migration.”, Phil. Trans. R. Soc. Lond. B., vol. 352: 661-668(1997).
[22] Pogue B, Testorf M, McBride T, Osterberg U and Paulsen K, “Instrumentation and design of a frequency-domain diffuse optical tomography imager for breast cancer detection.”, Optics Express, vol. 1: 391-403(1997).
[23] Jacques, S. L. "Spectral imaging and analysis to yield tissue optical properties." Journal of Innovative Optical Health: 123-129(2009).
[24] L. V. Wang, and H.-I. Wu, "Biomedical Optics: Principles and Imaging," John Wiley & Sons, Inc(2007).
[25] Richard C. Haskell, L. O. S., Tsong-Tseh Tsay, Ti-Chen Feng, Matthew S. McAdams, and Bruce J. Tromberg. "Boundary conditions for the diffusion equation in radiative transfer." Journal of the Optical Society of America A: 2727-2741(1994).
[26] R. Graaff, M. H. Koelink, F. F. M. de Mul, W. G. Zijistra, A. C. M. Dassel, and J. G. Aarnoudse, "Condensed Monte Carlo simulations for the description of light transport," Appl. Opt. 32: 426-434 (1993)
[27] G. M. Palmer, and N. Ramanujam, "Monte Carlo-based inverse model for calculating tissue optical properties. Part I: Theory and validation on synthetic phantoms," Appl. Opt. 45: 1062-1071 (2006).
[28] Kienle, and M. S. Patterson, "Determination of the optical properties of turbid media from a single Monte Carlo simulation," Physics in Medicine and Biology 41:2221 (1996).
[29] Bruce J Tromberg, N. S., Ryan Lanning, Albert Cerussi, Jennifer Espinoza, Tuan Pham, Lars Svaasand, and John Butler. "Non-Invasive In Vivo Characterization of Breast Tumors Using Photon Migration Spectroscopy." Neoplasia Press: 26-40(2000).
[30] Leff DR, W. O., Enfield LC, Gibson A, Athanasiou T, Patten DK, Hebden J, Yang GZ, Darzi A. (2008). "Diffuse optical imaging of the healthy and diseased breast: a systematic review." Published online:28