簡易檢索 / 詳目顯示

研究生: 王士豪
Wang, Shi-Hao
論文名稱: 螢光高分子混合微胞之製備與使用螢光能量轉移監控藥物包覆及釋放
Preparation of Fluorescent Polymeric Mixed Micelles for Monitoring Drug Encapsulation and Release via Forster Resonance Energy Transfer
指導教授: 吳文中
Wu, Wen-Chung
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 100
中文關鍵詞: 雙親性嵌段共聚高分子藥物載體微胞1,8-naphthalimide螢光共振能量轉移
外文關鍵詞: amphiphilic block copolymer, drug carrier micelle, 1,8-naphthalimide, Föster Resonance Energy Transfer
相關次數: 點閱:106下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究合成出三種雙親性嵌段高分子(amphiphilic block copolymer):[PCL-b-P(TEGMA-co-AHA)]、[PCL-b-P(TEGMA-co-FA)]、[PCL-b-P(TEGMA-co-(PNA-HEMA))] ,此三種高分子在水溶液中可以自組裝形成高分子混合微胞,疏水核心為poly(ɛ-caprolactone) (PCL)可以包覆疏水性藥物(Doxorubicin, DOX)、親水外殼暨溫度響應為poly(triethylene glycol) (PTEG),並修飾三種功能性單體:酸鹼響應6-aminohexanoic acid (AHA)、標靶功能folic acid (FA)和螢光影像單體4-pyrrolidine-1,8-naphthalimide (PNA)。
    環境響應包括溫度(TEG)與酸鹼(AHA)雙重功能,藉由調整AHA在親水鏈段的比例調控高分子的LCST,中性環境LCST高於人體體溫37℃,酸性環境LCST低於37℃,因此在中性血液循環中可以穩定包覆藥物,進入癌細胞溶酶體酸性環境使微胞結構破壞釋放藥物;標靶功能是利用海拉細胞(Hela cell)表面具有過度表現的葉酸(Folic acid)受體,因此設計微胞帶有葉酸能主動標靶癌細胞並有效地在目標細胞快速累積;螢光影像使用嶄新的材料:4-pyrrolidine-1,8-naphthalimide (PNA),其具有高強度螢光與細胞DNA嵌合等特性,而且其放射波長與藥物DOX吸收波長重疊,當兩者距離很近時會產生Förster Resonance Energy Transfer (FRET),利用此特性可偵測微胞包覆與釋放藥物。
    在in vitro 細胞毒性實驗顯示此高分子混合微胞不具有細胞毒性,包覆藥物的混合微胞能準確釋放藥物並毒殺癌細胞,證明此高分子混合微胞是極具潛力的藥物載體系統。

    In this study, we developed a drug delivery system based on polymeric mixed micelles that co-assembled from three amphiphilic block copolymers, [PCL-b-P(TEGMA-co-AHA)], [PCL-b-P(TEGMA-co-FA)] and [PCL-b-P(TEGMA-co-(PNA-HEMA))]. The hydrophobic core is composed of poly(ɛ-caprolactone) (PCL) which can encapsulate hydrophobic drug (Doxorubicin, DOX), and poly(triethylene glycol) methacrylate (PTEGMA) is a thermo-sensitive polymer acted as hydrophilic shell of micelle. In addition, we introduced pH-sensitive (AHA), active targeting (FA) and fluorescent (PNA-HEMA) moieties to the hydrophilic block.
    Our micelle has three functions:stimuli-sensitivity, active targeting and fluorescence image. “Stimuli-sensitivity” includes thermo- and pH- sensitive, we modulated the LCST of polymer higher than body temperature (37℃) at neutral pH and lower than 37℃ in acidic environment by adjusting the composition of AHA in hydrophilic block, therefore the mixed micelle steadily encapsulated drug in blood circulation at neutral pH and rapidly released drug in lysosome which is an acidic intracellular vesicle. Our micelle can “actively target” cancer cell by folic acid because Hela cells are overexpressed with folic acid receptors on the surface. “Fluorescence image” used brand new material:4-pyrrolidine-1,8-naphthalimide (PNA) which has high fluorescence intensity and good binding with DNA ability. In addition, FRET occurs when the spectral overlap and close proximity between PNA and DOX. We used FRET effect to detect our micelle encapsulated or released drug.
    In vitro cytotoxicity suggested that polymer mixed micelle is nontoxic and drug-encapsulated mixed micelle has ability to kill cancer cells. These polymer mixed micelles are promising drug carrier for cancer therapy.

    摘要 I Abstract II 誌謝 XIII 目錄 XIV 流程圖目錄 XVII 表目錄 XVIII 圖目錄 XIX 第一章、緒論 1 1-1 藥物載體系統(Drug Delivery System, DDS) 1 1-1-1 奈米藥物傳輸平台 1 1-1-2 藥物載體傳遞與細胞吞噬機制 3 1-1-3 藥物載體之藥物釋放機制 8 1-2多功能性奈米微胞設計 9 1-2-1 刺激響應高分子 10 1-2-2 螢光材料 18 1-3 奈米微胞製備 25 第二章、 研究動機 29 第三章、實驗 31 3.1實驗藥品 31 3.2實驗步驟 34 3.2.1 單體合成 34 3.2.2高分子合成 38 3.2.3微胞製備 47 3.2.4 Critical micelle concentration (CMC)檢測 47 3.2.5 Lower critical solution temperature (LCST)測試 48 3.2.6 藥物包覆與釋放 48 3.2.7 In Vitro細胞毒性測試 50 3.3儀器鑑定 52 3.3.1 Gel permeation chromatography (GPC) 52 3.3.2 Nuclear Magnetic Resonance (NMR) 52 3.3.3 Dynamic Light Scattering (DLS) 53 3.3.4 Transmission Electron Microscopy (TEM) 53 3.3.5 Ultraviolet-Visilbe Spectroscopy (UV-vis.) 54 3.3.6 Photoluminescence Spectroscopy (PL) 54 3.3.7 Enzyme-linked immunosorbent assay (ELISA) 54 第四章、結果與討論 55 4.1聚合與鑑定 55 4.1.1 Hydroxyethyl 2-bromoisobutyrate (HEBiB)合成 57 4.1.2 TEGMA單體合成 58 4.1.3 NSMA單體合成 59 4.1.4 PNA-HEMA單體合成 60 4.1.5 Poly(ɛ-Caprolactone)(PCL)聚合 61 4.1.6雙親性嵌段共聚高分子poly(ɛ-caprolactone)-b-poly[triethylene glycol methacrylate-co- N-hydroxysuccinimide methacrylate] [PCL-b-P(TEGMA-co-NSMA) ](PTN)之合成 63 4.1.7雙親性嵌段共聚高分子 [PCL-b-P(TEGMA-co-AHA)](PTAHA)、 [PCL-b-P(TEGMA-co-FA)] (PTFA) 之合成 65 4.1.8雙親性嵌段共聚高分子[PCL-b-P(TEGMA-co-(PNA-HEMA))] (PTPNA-1、PTPNA-2)之合成 70 4.2混合微胞的製備與性質鑑定 73 4.2.1溫度敏感性質 74 4.2.2 CMC性質測試 80 4.3光物理性質 82 4.3.1螢光物質PNA型態變化 82 4.3.2 PTPNA微胞螢光變化 84 4.3.3混合微胞變化 84 4.3.4 Förster Resonance Energy Transfer (FRET)效應 86 4.4藥物包覆與釋放測試 87 4.4.1藥物包覆 87 4.4.2藥物釋放 93 4.5 In Vitro細胞毒性測試 95 四、結論與未來工作 96 五、參考文獻 97

    1. Hu, C.-M.J. and L. Zhang, Nanoparticle-based combination therapy toward overcoming drug resistance in cancer. Biochemical Pharmacology, 2012. 83(8): p. 1104-1111.
    2. Wang, A.Z., R. Langer, and O.C. Farokhzad, Nanoparticle delivery of cancer drugs. Annu Rev Med, 2012. 63: p. 185-98.
    3. Miyata, K., R.J. Christie, and K. Kataoka, Polymeric micelles for nano-scale drug delivery. Reactive and Functional Polymers, 2011. 71(3): p. 227-234.
    4. Nishiyama, N. and K. Kataoka, Nanostructured Devices Based on Block Copolymer Assemblies for Drug Delivery: Designing Structures for Enhanced Drug Function, in Polymer Therapeutics II, R. Satchi-Fainaro and R. Duncan, Editors. 2006, Springer Berlin Heidelberg: Berlin, Heidelberg. p. 67-101.
    5. Gao, X., et al., In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol, 2004. 22(8): p. 969-76.
    6. Jain, R.K., Delivery of molecular medicine to solid tumors: lessons from in vivo imaging of gene expression and function. Journal of Controlled Release, 2001. 74(1–3): p. 7-25.
    7. Sanna, V., N. Pala, and M. Sechi, Targeted therapy using nanotechnology: focus on cancer. International Journal of Nanomedicine, 2014. 9: p. 467-483.
    8. Duncan, R., The dawning era of polymer therapeutics. Nat Rev Drug Discov, 2003. 2(5): p. 347-360.
    9. Schmaljohann, D., Thermo- and pH-responsive polymers in drug delivery. Advanced Drug Delivery Reviews, 2006. 58(15): p. 1655-1670.
    10. Gil, E.S. and S.M. Hudson, Stimuli-reponsive polymers and their bioconjugates. Progress in Polymer Science, 2004. 29(12): p. 1173-1222.
    11. Gibson, M.I. and R.K. O'Reilly, To aggregate, or not to aggregate? considerations in the design and application of polymeric thermally-responsive nanoparticles. Chemical Society Reviews, 2013. 42(17): p. 7204-7213.
    12. Sun, Y.-M. and T.-L. Huang, Pervaporation of ethanol-water mixtures through temperature-sensitive poly(vinyl alcohol-g-N-isopropyacrylamide) membranes. Journal of Membrane Science, 1996. 110(2): p. 211-218.
    13. Alarcon, C.d.l.H., S. Pennadam, and C. Alexander, Stimuli responsive polymers for biomedical applications. Chemical Society Reviews, 2005. 34(3): p. 276-285.
    14. Schild, H.G., Poly(N-isopropylacrylamide): experiment, theory and application. Progress in Polymer Science, 1992. 17(2): p. 163-249.
    15. Idziak, I., et al., Thermosensitivity of Aqueous Solutions of Poly(N,N-diethylacrylamide). Macromolecules, 1999. 32(4): p. 1260-1263.
    16. Van Durme, K., et al., Influence of Poly(ethylene oxide) Grafts on Kinetics of LCST Behavior in Aqueous Poly(N-vinylcaprolactam) Solutions and Networks Studied by Modulated Temperature DSC. Macromolecules, 2004. 37(3): p. 1054-1061.
    17. Lutz, J.-F., Ö. Akdemir, and A. Hoth, Point by Point Comparison of Two Thermosensitive Polymers Exhibiting a Similar LCST:  Is the Age of Poly(NIPAM) Over? Journal of the American Chemical Society, 2006. 128(40): p. 13046-13047.
    18. Lutz, J.-F., Polymerization of oligo(ethylene glycol) (meth)acrylates: Toward new generations of smart biocompatible materials. Journal of Polymer Science Part A: Polymer Chemistry, 2008. 46(11): p. 3459-3470.
    19. Lutz, J.-F. and A. Hoth, Preparation of Ideal PEG Analogues with a Tunable Thermosensitivity by Controlled Radical Copolymerization of 2-(2-Methoxyethoxy)ethyl Methacrylate and Oligo(ethylene glycol) Methacrylate. Macromolecules, 2006. 39(2): p. 893-896.
    20. Dai, S., P. Ravi, and K.C. Tam, pH-Responsive polymers: synthesis, properties and applications. Soft Matter, 2008. 4(3): p. 435-449.
    21. Philippova, O.E., et al., pH-Responsive Gels of Hydrophobically Modified Poly(acrylic acid). Macromolecules, 1997. 30(26): p. 8278-8285.
    22. Torres-Lugo, M. and N.A. Peppas, Molecular Design and in Vitro Studies of Novel pH-Sensitive Hydrogels for the Oral Delivery of Calcitonin. Macromolecules, 1999. 32(20): p. 6646-6651.
    23. Jones, M.S., Effect of pH on the lower critical solution temperatures of random copolymers of N-isopropylacrylamide and acrylic acid. European Polymer Journal, 1999. 35(5): p. 795-801.
    24. Chen, C.-Y., et al., pH-dependent, thermosensitive polymeric nanocarriers for drug delivery to solid tumors. Biomaterials, 2013. 34(18): p. 4501-4509.
    25. Shimizu, M. and T. Hiyama, Organic Fluorophores Exhibiting Highly Efficient Photoluminescence in the Solid State. Chemistry – An Asian Journal, 2010. 5(7): p. 1516-1531.
    26. Rajdev, P., D. Basak, and S. Ghosh, Insights into Noncovalently Core Cross-Linked Block Copolymer Micelles by Fluorescence Resonance Energy Transfer (FRET) Studies. Macromolecules, 2015. 48(10): p. 3360-3367.
    27. Sapsford, K.E., L. Berti, and I.L. Medintz, Materials for Fluorescence Resonance Energy Transfer Analysis: Beyond Traditional Donor–Acceptor Combinations. Angewandte Chemie International Edition, 2006. 45(28): p. 4562-4589.
    28. Banerjee, S., et al., Recent advances in the development of 1,8-naphthalimide based DNA targeting binders, anticancer and fluorescent cellular imaging agents. Chemical Society Reviews, 2013. 42(4): p. 1601-1618.
    29. Wang, K., et al., DNA binding and anticancer activity of naphthalimides with 4-hydroxyl-alkylamine side chains at different lengths. Bioorganic & Medicinal Chemistry Letters, 2012. 22(2): p. 937-941.
    30. Wang, K.-R., et al., Fluorescence enhancement, cellular imaging and biological investigation of chiral pyrrolidinol modified naphthalimide derivatives. RSC Advances, 2014. 4(88): p. 47605-47608.
    31. Sutton, D., et al., Functionalized micellar systems for cancer targeted drug delivery. Pharm Res, 2007. 24(6): p. 1029-46.
    32. Tyrrell, Z.L., Y. Shen, and M. Radosz, Fabrication of micellar nanoparticles for drug delivery through the self-assembly of block copolymers. Progress in Polymer Science, 2010. 35(9): p. 1128-1143.
    33. Jones, M.C. and J.C. Leroux, Polymeric micelles - a new generation of colloidal drug carriers. European Journal of Pharmaceutics and Biopharmaceutics, 1999. 48(2): p. 101-111.
    34. Gaucher, G., et al., Block copolymer micelles: preparation, characterization and application in drug delivery. Journal of Controlled Release, 2005. 109(1–3): p. 169-188.
    35. Allen, C., D. Maysinger, and A. Eisenberg, Nano-engineering block copolymer aggregates for drug delivery. Colloids and Surfaces B: Biointerfaces, 1999. 16(1–4): p. 3-27.
    36. Jette, K.K., et al., Preparation and drug loading of poly(ethylene glycol)-block-poly(epsilon-caprolactone) micelles through the evaporation of a cosolvent azeotrope. Pharm Res, 2004. 21(7): p. 1184-91.
    37. Yokoyama, M., et al., Characterization of physical entrapment and chemical conjugation of adriamycin in polymeric micelles and their design for in vivo delivery to a solid tumor. J Control Release, 1998. 50(1-3): p. 79-92.
    38. Ho, K.S. and M.S. Shoichet, Design considerations of polymeric nanoparticle micelles for chemotherapeutic delivery. Current Opinion in Chemical Engineering, 2013. 2(1): p. 53-59.
    39. Sarbu, T., et al., Synthesis of hydroxy-telechelic poly(methyl acrylate) and polystyrene by atom transfer radical coupling. Macromolecules, 2004. 37(26): p. 9694-9700.
    40. Han, S., M. Hagiwara, and T. Ishizone, Synthesis of thermally sensitive water-soluble polymethacrylates by living anionic polymerizations of oligo(ethylene glycol) methyl ether methacrylates. Macromolecules, 2003. 36(22): p. 8312-8319.
    41. Batz, H.G., Franzman.G, and Ringsdor.H, MODEL REACTIONS FOR SYNTHESIS OF PHARMACOLOGICALLY ACTIVE POLYMERS BY WAY OF MONOMERIC AND POLYMERIC REACTIVE ESTERS. Angewandte Chemie-International Edition in English, 1972. 11(12): p. 1103-1104.
    42. Pang, Y., Bipolar and fixable probe targeting mitochondria to trace local depolarization via two-photon fluorescence lifetime imaging. Analyst, 2015: p. 5488-5494.
    43. Jones, M.-C. and J.-C. Leroux, Polymeric micelles – a new generation of colloidal drug carriers. European Journal of Pharmaceutics and Biopharmaceutics, 1999. 48(2): p. 101-111.
    44. Letchford, K. and H. Burt, A review of the formation and classification of amphiphilic block copolymer nanoparticulate structures: micelles, nanospheres, nanocapsules and polymersomes. European Journal of Pharmaceutics and Biopharmaceutics, 2007. 65(3): p. 259-269.
    45. Sapra, P. and T.M. Allen, Internalizing antibodies are necessary for improved therapeutic efficacy of antibody-targeted liposomal drugs. Cancer Research, 2002. 62(24): p. 7190-7194.
    46. Gillies, E.R. and J.M.J. Frechet, pH-responsive copolymer assemblies for controlled release of doxorubicin. Bioconjugate Chemistry, 2005. 16(2): p. 361-368.
    47. Kim, C. and Y.L. Hsieh, Wetting and absorbency of nonionic surfactant solutions on cotton fabrics. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 2001. 187: p. 385-397.

    下載圖示 校內:2019-08-31公開
    校外:2019-08-31公開
    QR CODE