簡易檢索 / 詳目顯示

研究生: 李文菁
Li, Wen-Ching
論文名稱: 以電紡絲法製備PS/PAN芯鞘型纖維
Preparation of PS/PAN core/shell fibers via electrospinning
指導教授: 王紀
Wang, Chi
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 168
中文關鍵詞: 電紡絲芯鞘型
外文關鍵詞: core/shell, electrospinning
相關次數: 點閱:70下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以PS、PAN溶液進行電紡絲製備core/shell複合纖維,探討不同操作變數,如針徑、內管黏度、內外管流量、操作電壓等,對電紡操作穩定性、cone與jet長度變化、液柱直徑與纖維直徑的影響。並利用雷射繞射法求得內外層液柱直徑;加入螢光劑FITC於PS溶液中,以螢光顯微鏡觀察纖維,並將纖維以環氧樹脂包埋後超薄切片以TEM觀察,並使用適當溶劑洗去core或shell部分之高分子確認core/shell結構存在。

    實驗發現使用ND-1紡口,PS/PAN core/shell系統,core流體黏度(hc)、core、shell流體流量(Qc、Qs)、操作電壓(V)的改變對纖維外徑(Df)及液柱內外徑(dj、Dj)存在著scaling law的關係式分別為:Dj ~ hc0.07、Df ~ hc0.10;Dj ~ Qs0.15、dj ~ Qs0.17、Df ~ Qs0.07;Dj ~ Qc0.30、dj ~ Qc0.32、Df ~ Qc0.61;Dj ~ V-1.06、dj ~ V-0.93、Df ~ V-0.72。

    若使用ND-2紡口,PAN/PS core/shell系統,scaling law的關係式為:Dj ~ Qs0.47、dj ~ Qs0.42、Df ~ Qs0.41。

    實驗發現,不論操作變數如何改變,可得一纖維外徑與液柱直徑相關的精通曲線,即:Df = mDjn,m與溶液性質有關,對PS/PAN系統而言:m=0.129,n=1.37;但對PAN/PS系統而言:m=0.851,n=0.85。

    By the electrospinning process, we prepared core/shell fibers of PS/PAN. We discussed the effects of processing variables such as needle size, core fluid viscosity, core flow rate, shell flow rate and applied voltage on the core/shell electrospinnability. Based on the laser diffraction method, the diameters of core and shell jets were measured. Fluorescence microscope (FM) and transmission electron microscope (TEM) were used to reveal the core/shell structure. For a given solution, supposition of all data available for Df and Dj is obtained regardless of the processing variables, suggesting the intimate relation between Df and Dj. A simple relation is given as follows:Df = mDjn, where m is a pre-factor depending upon the solution properties and the exponent n is approximately constant. For the PS/PAN core/shell system, values of m and n were found to be 0.129 and 1.37, respectively. For the PAN /PS core/shell system, m=0.851 and n=0.85.

    Scaling laws were obtained to reveal the effect of the core fluid viscosity (hc), core/shell jet diameters (dj, Dj), fiber shell diameter (Df), and applied voltage (V). The corresponding results are shown as follows:
    For ND-1 needle and PS/PAN core/shell fluids:Dj ~ hc0.07, Df ~ hc0.10; Dj ~ Qs0.15, dj ~ Qs0.17, Df ~ Qs0.07; Dj ~ Qc0.30, dj ~ Qc0.32, Df ~ Qc0.61; Dj ~ V-1.06, dj ~ V-0.93, Df ~ V-0.72.
    For ND-2 needle and PAN/PS core/shell fluids:Dj ~ Qs0.47, dj ~ Qs0.42, Df ~ Qs0.41.

    摘要………………………………………………………………………… i Abstract…………………………………………………………………….. ii 目錄………………………………………………………………………… iii 表目錄……………………………………………………………………… vi 圖目錄……………………………………………………………………… vii 符號………………………………………………………………………… xii 一、 前言…………………………………………………………………. 1 二、 簡介………………………………………………………………… 2 2.1 電紡絲模式………………………………………………… 2 2.1.1 dripping mode…………………………………….... 2 2.1.2 pulsating mode……………………………………... 3 2.1.3 cone-jet mode……………………………………..... 3 2.1.4 multi-jet mode……………………………………… 3 2.2 電紡絲實驗之觀察………………………………………… 4 2.2.1 cone 和jet 之形態………………………………… 4 2.2.2 jet 甩動之過程…………………………………….. 4 2.2.3 纖維之形態………………………………………… 4 三、 文獻回顧…………………………………………………………… 12 3.1 聚丙烯腈(polyacrylonitrile, PAN)之電紡絲………………. 12 3.2 聚苯乙烯(polystyrene, PS)之電紡絲………………………. 12 3.3 coaxial電噴霧與coaxial電紡絲…………………………... 13 3.3.1 coaxial電噴霧……………………………………… 13 3.3.2 coaxial電紡絲……………………………………… 15 3.3.3 emulsion電紡絲……………………………………. 17 3.4 shell紡口通入氮氣對電紡纖維形態之影響……………… 18 3.5 Taylor cone內流場之分佈…………………………………. 18 3.6 液柱之beads on string現象………………………………... 19 3.7 PS、PAN微粒之SEM與TEM影像... …………………… 19 四、 實驗………………………………………………………………… 63 4.1 實驗藥品…………………………………………………… 63 4.2 實驗材料及儀器…………………………………………… 63 4.2.1 量測溶液性質之儀器……………………………… 63 4.2.2 電紡絲儀器及材料………………………………… 64 4.2.3 光學儀器…………………………………………… 65 4.3 儀器操作步驟……………………………………………… 66 4.3.1 雷射量測步驟……………………………………… 66 4.4 實驗步驟…………………………………………………… 67 4.4.1 PAN/DMF溶液配製………………………………. 67 4.4.2 PS/DMF溶液配製…………………………………. 68 4.4.3 FITC-PS/DMF溶液配製………………………….. 68 4.4.4 實驗流程…………………………………………… 68 4.4.5 cone高度與jet長度之定義……………………….. 69 五、 結果與討論………………………………………………………… 73 5.1 溶液性質…………………………………………………… 73 5.1.1 濃度對黏度的影響………………………………… 73 5.1.2 濃度對導電度的影響……………………………… 73 5.1.3 濃度對表面張力的影響…………………………… 73 5.2 固定變數與使用紡口之說明……………………………… 74 5.3 電紡絲纖維之變因探討(ND-1紡口)……………………… 74 5.3.1 core、shell流體之選擇…………………………… 74 5.3.2 core流體黏度之影響……..……………………….. 75 5.3.3 shell流體流量之影響……………………...………. 76 5.3.4 core流體流量的影響………………...……………. 76 5.3.5 電壓的影響……………..………………………….. 78 5.3.6 纖維外徑與液柱外徑之相互關係(ND-1) ………... 78 5.3.7 以ND-1紡口進行實驗之cone與纖維形態觀察…. 78 5.3.7.1 cone內外層流體之邊界………………… 78 5.3.7.2 beaded fibers外觀之觀察………………. 79 5.3.7.3 纖維截面之觀察………………………… 79 5.3.7.4 以chloroform洗去纖維內部PS……….. 79 5.4 電紡絲纖維之變因探討(ND-2紡口) …...………………… 80 5.4.1 PS/PAN系統……………………………………….. 80 5.4.2 PAN/PS系統…………………………….…………. 81 5.4.3 纖維外徑與液柱外徑之相互關係…………….…... 82 5.4.4 以chloroform洗去纖維外部PS……………….… 83 5.5 收集方式對電紡絲成形纖維之影響……………………… 83 5.5.1 轉動收集…………………………………………… 83 5.5.2 平行刀鋒收集……………………………………… 83 5.5.3 水面收集…………………………………………… 84 5.5.4 纖維截面之觀察…………………………………… 84 5.6 以螢光顯微鏡觀察成形纖維……………………………… 85 六、 結論………………………………………………………………… 163 七、 參考文獻…………………………………………………………… 165 八、 自述.................................................................................................... 168

    [1] 林坤賢, 以電紡絲法製備PBO纖維, 國立成功大學碩士論文, (2005)
    [2] 林健樺, 以電紡絲法製備聚苯乙烯纖維膜, 國立成功大學碩士論文, (2004)
    [3] 洪崇豪, 以電紡絲法製備彈性奈米SBS纖維膜, 國立成功大學碩士論文, (2004)
    [4] C. Wang, H. S. Chien, C. H. Hsu, Y. C. Wang, C. T. Wang, H. A. Lu, “Electrospinning of polyacrylonitrile solutions at elevated temperatures.” Macromolecules, 40, 7973 (2007)
    [5] C. Wang, C. H. Hsu, J. H. Lin, “Scaling laws in electrospinning of polystyrene solutions.” Macromolecules, 39, 7662 (2006)
    [6] X. Chen, L. Jia, X. Yin, J. Cheng, “Spraying modes in coaxial jet electrospray with outer driving liquid.” Phys. Fluids, 17, 032101 (2005)
    [7] Y. K. Hwang, U. Jeong, E. C. Cho, “Production of uniform-sized polymer core-shell microcapsules by coaxial electrospraying.” Langmuir, 24, 2446, (2008)
    [8] I. G. Loscertales, A. Barrero, I. Guerrero, R. Cortijo, M. Marquez, A. M. Ganan-Calvo, “Micro/nano encapsulation via electrified coaxial liquid jets.” Science, 295 1695 (2002);
    [9] J. M. Lopez-Herrera, A. Barrero, A. Lopez, I. G. Loscertales, M. Marquez, “Coaxial jets generated from electrified Taylor cones. Scaling laws.” J. Aerosol Sci., 34, 535 (2003)
    [10] J. E. Díaz, A. Barrero, M. Márquez, I. G. Loscertales, “Controlled Encapsulation of hydrophobic liquids in hydrophilic polymer nanofibers by co-electrospinning.” Adv. Funct. Mater., 16, 2110 (2006)
    [11] M. Lallave, J. Bedia, R. Ruiz-Rosas, J. Rodríguez-Mirasol, T. Cordero, J. C. Otero, M. Marquez, A. Barrero, I. G. Loscertales, “Filled and hollow carbon nanofibers by coaxial eElectrospinning of Alcell lignin without binder polymers.” Adv. Mater., 19, 4292 (2007)
    [12] D. Li, Y. Xia, “Direct fabrication of composite and ceramic hollow nanofibers by electrospinning.” Nano Lett., 4, 933 (2004)
    [13] D. Li, J. T. McCann, Y. Xia, “Use of electrospinning to directly fabricate hollow nanofibers with functionalized inner and outer surfaces.” Small, 1, 83 (2005)
    [14] J. T. McCann, D. Li, Y. Xia, “Electrospinning of nanofibers with core-sheath, hollow, or porous structures. ” J. Mater. Chem., 15, 735 (2005)
    [15] J. H. Yu, S. V. Fridrikh, G. C. Rutledge, “Production of submicrometer diameter fibers by two-fluid electrospinning.” Adv. Mater., 16, 1562 (2004)
    [16] M. Wang, J. H. Yu, D. L. Kaplan, G. C. Rutledge, “Production of submicron diameter silk fibers under benign processing conditions by two-fluid electrospinning. ” Macromolecules, 39, 1102 (2006)
    [17] Y. Z. Zhang, X. Wang, Y. Feng, J. Li, C. T. Lim, S. Ramakrishna, “Coaxial electrospinning of (fluorescein isothiocyanate-conjugated bovine serum albumin)-encapsulated poly(-caprolactone) nanofibers for sustained release.” Biomacromolecules, 7, 1049 (2006)
    [18] E. Zussman, A. L. Yarin, A. V. Bazilevsky, R. A., and M. Feldman, “Electrospun polyacrylonitrile / poly(methyl methacrylate)-derived turbostratic carbon micro-/nanotubes.” Adv. Mater., 18, 348 (2006)
    [19] A. V. Bazilevsky, A. L. Yarin, C. M. Megaridis, “Co-electrospinning of core-shell fibers using a single-nozzle technique. ” Langmuir, 23, 2311 (2007)
    [20] C. Kim, Y. I. Jeong, B. T. N. Ngoc, K. S. Yang, M. Kojima, Y. A. Kim, M. Endo, J. W. Lee, “Synthesis and characterization of porous carbon nanofibers with hollow cores through the thermal treatment of electrospun copolymeric nanofiber webs. ” Small, 3, 91 (2007)
    [21] X. Xu, X. Zhuang, X. Chen, X. Wang, L. Yang, X. Jing, “Preparation of core-sheath composite Nnanofibers by emulsion electrospinning.” Macromol. Rapid Commun., 27, 1637 (2006)
    [22] G. Larsen, R. Spretz, R. Velarde-Ortiz, “Use of coaxial gas jackets to stabilize Taylor cones of volatile solutions and to induce particle-to-fiber transitions.” Adv. Mater., 16, 166 (2004)
    [23] A. Barrero, A. M. Gañán-Calvo, J. Davila, A. Palacio, E. Gomez-Gonzalez, “Low and high Reynolds number flows inside Taylor cones.” Phys. Rev. E, 58, 7309 (1998)
    [24] M. S. N. Oliveira, G. H. McKinley, “Iterated stretching and multiple beads-on-a-string phenomena in dilute solutions of highly extensible flexible polymers.” Phys. Fluids, 17, 071704 (2005)
    [25] L. Boguslavsky, S. Margel, “Synthesis and characterization of micrometer-sized homo and composite polyacrylonitrile particles of narrow size distribution on the basis of single-step swelling of uniform polystyrene template microspheres.” J. Polym. Sci., Part A: Polym. Chem., 42, 4847 (2004)

    下載圖示 校內:2018-08-08公開
    校外:2018-08-08公開
    QR CODE