簡易檢索 / 詳目顯示

研究生: 許展
Hsu, Chan
論文名稱: 光子動力學和糾纏光子源之研究: 從實驗非馬可夫動力學的識別到基於薩格納克干涉儀的偏振糾纏光子源的產生
Photonic Dynamics and Entangled Photon Source: from Identification of Experimental Non-Markovian Dynamics to Generation of Polarization Entangled Photon Source Based on Sagnac Interferometer
指導教授: 李哲明
Li, Che-Ming
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 108
中文關鍵詞: 非馬可夫光子動力學完全正可分割性薩格納克干涉儀糾纏光子源
外文關鍵詞: Non-Markovian photon dynamics, CP-divisibility, Polarization Sagnac interferometer, Entangled photon source
相關次數: 點閱:44下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 光子具長距離傳輸等特性,適用於實現如量子通訊與計算之量子資訊處理任務,其中有兩個重要課題: 一,光子傳遞過程中主系統會與環境交互作用,其馬可夫與非馬可夫動力學之探究。二,多光子彼此交互作用、形成光子糾纏,已被視為量子資訊處理重要的資源。針對以上兩項主題,本論文第一部分,我們基於馬可夫動力學定義的完全正可分割性(completely positive divisibility),從過程觀點提出實驗可行的兩種方法來識別非馬可夫性: 一種為非馬可夫過程穩健性,藉此方法證明非馬可夫性可視為量子過程能力,並定量特徵一個非完全正過程承受最小量完全正操作、成為完全正過程的能力,其中非完全正過程可由量子過程斷層掃描和反矩陣計算得到;另一種是通過準備最少兩個初始態、無需量子過程斷層掃描,有效率地識別非馬可夫動力學;以上兩種方式皆可使用全光學裝置來實現,應用於分析雙折射晶體中單光子與雙光子動力學的非馬可夫性,亦可應用於探索其他非馬可夫動力學系統,如在超導系統中非馬可夫效應的容錯量子計算之估算誤差臨界值。論文第二部份,我們利用II型週期性極化磷酸鈦氧鉀晶體,成功建立薩格納克(Sagnac)干涉儀偏振糾纏光子源;首先,在初步測試階段,將晶體在焦距30公分的聚焦行為下保持在27.1°C,測得單光子產率在輸入功率10.8毫瓦下每秒約58萬個計數;之後將晶體置於無聚焦透鏡的薩格納克干涉儀中,我們測得在輸入功率5毫瓦下每秒約1萬個偏振糾纏光子對,且與最大糾纏貝爾態的保真度優於98%,遠超過CHSH型貝爾不等式古典邊界值達17個標準偏差,已達到相關文獻的糾纏品質。此糾纏光子源可直接應用於量子技術之開發,例如遠程量子態的非古典準備、使用不受信任的實驗裝置完成量子態斷層掃描和通過見證系統的量子同調性展示遠程狀態準備性能等量子資訊處理任務。

    Photon has the advantage of long-distance transmission and is suitable for realizing quantum-information processing tasks such as quantum communication and computing. There are two important topics: First, the principal system interacts with the environment during the photon transmission process and the research of its Markovian and non-Markovian dynamics. Second, two photons can interact with each other to form photon entanglement, which has been regarded as an important resource for quantum-information processing. For the above two topics, in the first part of this thesis, we propose two experimentally feasible methods to identify non-Markovianity based on the completely positive (CP) divisibility defined by Markovian dynamics: One is the non-Markovian process robustness, which proves that non-Markovianity can be treated as quantum process capability and quantitatively characterizes the ability of a non-CP process to endure the minimum amount of CP operations to become a CP process, where the non-CP process can be determined by quantum process tomography (QPT) and inverse matrix calculation. The other method is that the identification of non-Markovian dynamics can be efficiently implemented without QPT by preparing a minimum of two initial states. Both of the above methods can be implemented using all-optical devices, which can be applied to analyze the non-Markovianity of single-photon and two-photon dynamics in birefringent crystals and can also be applied to explore other non-Markovian dynamical systems. For example, estimating the error threshold in fault-tolerant quantum computing with non-Markovian effects in superconducting systems. In the second part of the thesis, we successfully established a Sagnac interferometer polarization-entangled photon source by using type-II periodically poled potassium titanyl phosphate (ppKTP); first, in the preliminary testing, the crystal is kept at 27.1°C under the focusing behavior of the 30 cm focal length, and the single-photon yield is measured to be about 580,000 counts per second at the input power of 10.8 mW; the crystal is then placed in a Sagnac interferometer without a focusing lens. We measure about 10,000 polarization-entangled photon pairs per second at the input power of 5 mW with better than 98% fidelity to the maximally entangled Bell state and violate the CHSH-type Bell's inequality by more than 17 standard deviations, has achieved the quality of entanglement in related research. This entangled photon source can be used to implement the quantum-information processing tasks of nonclassical preparation of quantum remote states, quantum state tomography using untrusted devices, and demonstrating remote state preparation performance through witnessing quantum coherence of the system.

    摘要 i Abstract iii 誌謝 v Table of Contents vii List of Tables xi List of Figures xiii Nomenclature xv Chapter 1. Introduction 1 1.1. Background 1 1.1.1. Markovian and non-Markovian dynamics of open quantum systems 2 1.1.2. The generation of entangled photons 3 1.2. Motivation 4 1.2.1. Identification of non-Markovian dynamics 5 1.2.2. High-quality polarization-entangled photon source 7 1.3. Purpose 7 1.3.1. Identification of non-Markovianity from process analysis perspective 8 1.3.2. Entangled photon source based on Sagnac interferometer 9 1.4. Outline 10 Chapter 2. Description of Quantum States and Processes 13 2.1. Quantum operations formalism 13 2.2. Quantum tomography 14 2.2.1. Quantum state tomography 15 2.2.2. Quantum process tomography 16 Chapter 3. Experimentally Feasible and Efficient Identification of Non-Markovian Photon Dynamics with the Completely-Positive-Divisibility 20 3.1. Defintions and criteria of non-Markovian dynamics 21 3.1.1. Master equation and non-Markovian dynamics 21 3.1.2. The Breuer-Laine-Piilo (BLP) non-Markovian criterion 23 3.1.3. The Rivas-Huelga-Plenio (RHP) non-Markovian criterion 24 3.2. Photon dynamics in birefringent crystals 25 3.2.1. Single-photon and two-photon dynamics of previous studies 25 3.2.2. Identifiation results of photonic experiments in previous studies 31 3.3. Identification and quantification of non-Markovian dynamics 32 3.3.1. Determining non-Markovian dynamics 32 3.3.2. Non-Markovian process robustness 34 3.3.3. Identification of non-Markovianity of photon dynamics in birefringent crystals by non-Markovian process robustness 37 3.4. Efficiently identifying non-Markovian dynamics 43 3.4.1. Number of experimental setups required for β [Eq. (3.23)] 44 3.4.2. Method for efficiently identifying non-Markovian dyanamics 45 3.4.3. Results of efficiently identifying non-Markovian dyanamics 48 3.5. Comparison with identification of non-Markovian dynamics based on GKSL master equation 55 3.5.1. Previous studies based on GKSL master equation 55 3.5.2. Four different kinds of identification results 60 Chapter 4. Polarization-Entangled Photons using a Polarization Sagnac Interferometer Generated by a Periodically Poled Crystal 65 4.1. Spontaneous parametric downconversion in the periodically poled crystal 66 4.1.1. Spontaneous parametric downconversion 66 4.1.2. Quasi-phase matching (QPM) condition 68 4.2. Photon generation by a type-II SPDC periodically poled KTiOPO4 crystal 70 4.2.1. Single-photon source experimental setup 71 4.2.2. The effect of temperature control of thermoelectric cooler (TEC) on the photon pairs yield 73 4.2.3. The effect of focus lens on the photon pairs yield 76 4.3. Sagnac-based polarization-entangled photon source with ppKTP crystal 77 4.3.1. Polarization Sagnac interferometer 77 4.3.2. Entanglement photon source experimental setup 80 4.3.3. Performance of a Sagnac-based polarization-entangled photon source 83 4.4. Experimental applications in quantum-information processing task 89 4.4.1. Nonclassical preparation of quantum remote states 89 4.4.2. Quantum state tomography using untrusted devices 92 4.4.3. Demonstrating remote state preparation performance through witnessing quantum coherence of the system 95 Chapter 5. Summary and Outlook 98 5.1. Summary 98 5.2. Outlook 99 References 102

    [1] Y.-A. Chen, S. Chen, Z.-S. Yuan, B. Zhao, C.-S. Chuu, J. Schmiedmayer, and J.-W. Pan, “Memory-built-in quantum teleportation with photonic and atomic qubits,” Nature Physics, vol. 4, no. 2, pp. 103–107, 2008.
    [2] C.-W. Chou, H. De Riedmatten, D. Felinto, S. V. Polyakov, S. J. Van Enk, and H. J. Kimble, “Measurement-induced entanglement for excitation stored in remote atomic ensembles,” Nature, vol. 438, no. 7069, pp. 828–832, 2005.
    [3] D. Leibfried, E. Knill, S. Seidelin, J. Britton, R. B. Blakestad, J. Chiaverini, D. B. Hume, W. M. Itano, J. D. Jost, C. Langer, et al., “Creation of a six-atom `schrödinger cat'state,” Nature, vol. 438, no. 7068, pp. 639–642, 2005.
    [4] H. Häffner, W. Hänsel, C. Roos, J. Benhelm, D. Chek-al Kar, M. Chwalla, T. Körber, U. Rapol, M. Riebe, P. Schmidt, et al., “Scalable multiparticle entanglement of trapped ions,” Nature, vol. 438, no. 7068, pp. 643–646, 2005.
    [5] T. Yamamoto, Y. A. Pashkin, O. Astafiev, Y. Nakamura, and J.-S. Tsai, “Demonstration of conditional gate operation using superconducting charge qubits,” Nature, vol. 425, no. 6961, pp. 941–944, 2003.
    [6] Y. A. Pashkin, T. Yamamoto, O. Astafiev, Y. Nakamura, D. Averin, and J. Tsai, “Quantum oscillations in two coupled charge qubits,” Nature, vol. 421, no. 6925, pp. 823–826, 2003.
    [7] I. Chiorescu, Y. Nakamura, C. M. Harmans, and J. Mooij, “Coherent quantum dynamics of a superconducting flux qubit,” Science, vol. 299, no. 5614, pp. 1869–1871, 2003.
    [8] K. Kraus, A. Böhm, J. D. Dollard, and W. Wootters, “States, effects, and operations: fundamental notions of quantum theory. lectures in mathematical physics at the university of texas at austin,” Lecture Notes in Physics, vol. 190, 1983.
    [9] H.-P. Breuer, F. Petruccione, et al., The theory of open quantum systems. Oxford University Press on Demand, 2002.
    [10] R. P. Feynman and F. Vernon Jr, “The theory of a general quantum system interacting with a linear dissipative system,” Annals of Physics, vol. 24, pp. 118–173, 1963.
    [11] F. Shibata, Y. Takahashi, and N. Hashitsume, “A generalized stochastic liouville equation. non-markovian versus memoryless master equations,” Journal of Statistical Physics, vol. 17, no. 4, pp. 171–187, 1977.
    [12] G. Gasbarri and L. Ferialdi, “Recursive approach for non-markovian timeconvolutionless master equations,” Physical Review A, vol. 97, no. 2, p. 022114, 2018.
    [13] I. De Vega and D. Alonso, “Dynamics of non-markovian open quantum systems,” Reviews of Modern Physics, vol. 89, no. 1, p. 015001, 2017.
    [14] Y.-N. Chen, G.-Y. Chen, Y.-Y. Liao, N. Lambert, and F. Nori, “Detecting non-markovian plasmonic band gaps in quantum dots using electron transport,” Physical Review B, vol. 79, no. 24, p. 245312, 2009.
    [15] W.-M. Zhang, P.-Y. Lo, H.-N. Xiong, M. W.-Y. Tu, and F. Nori, “General nonmarkovian dynamics of open quantum systems,” Physical Review Letters, vol. 109, no. 17, p. 170402, 2012.
    [16] X. Yin, J. Ma, X. Wang, and F. Nori, “Spin squeezing under non-markovian channels by the hierarchy equation method,” Physical Review A, vol. 86, no. 1, p. 012308, 2012.
    [17] D. Chruściński and S. Maniscalco, “Degree of non-markovianity of quantum evolution,” Physical Review Letters, vol. 112, no. 12, p. 120404, 2014.
    [18] H.-B. Chen, J.-Y. Lien, G.-Y. Chen, and Y.-N. Chen, “Hierarchy of non-markovianity and k-divisibility phase diagram of quantum processes in open systems,” Physical Review A, vol. 92, no. 4, p. 042105, 2015.
    [19] H.-B. Chen, N. Lambert, Y.-C. Cheng, Y.-N. Chen, and F. Nori, “Using non-markovian measures to evaluate quantum master equations for photosynthesis,” Scientific Reports, vol. 5, no. 1, pp. 1–12, 2015.
    [20] H.-N. Xiong, P.-Y. Lo, W.-M. Zhang, F. Nori, et al., “Non-markovian complexity in the quantum-to-classical transition,” Scientific Reports, vol. 5, p. 13353, 2015.
    [21] D. F. Urrego, J. Flórez, J. Svozilík, M. Nuñez, and A. Valencia, “Controlling nonmarkovian dynamics using a light-based structured environment,” Physical Review A, vol. 98, no. 5, p. 053862, 2018.
    [22] H.-P. Breuer, E.-M. Laine, J. Piilo, and B. Vacchini, “Colloquium: Non-markovian dynamics in open quantum systems,” Reviews of Modern Physics, vol. 88, no. 2, p. 021002, 2016.
    [23] H.-P. Breuer, “Foundations and measures of quantum non-markovianity,” Journal of Physics B: Atomic, Molecular and Optical Physics, vol. 45, no. 15, p. 154001, 2012.
    [24] Á. Rivas, S. F. Huelga, and M. B. Plenio, “Quantum non-markovianity: characterization, quantification and detection,” Reports on Progress in Physics, vol. 77, no. 9, p. 094001, 2014.
    [25] H.-P. Breuer, E.-M. Laine, and J. Piilo, “Measure for the degree of non-markovian behavior of quantum processes in open systems,” Physical Review Letters, vol. 103, no. 21, p. 210401, 2009.
    [26] E.-M. Laine, J. Piilo, and H.-P. Breuer, “Measure for the non-markovianity of quantum processes,” Physical Review A, vol. 81, no. 6, p. 062115, 2010.
    [27] S.-L. Chen, N. Lambert, C.-M. Li, A. Miranowicz, Y.-N. Chen, and F. Nori, “Quantifying non-markovianity with temporal steering,” Physical Review Letters, vol. 116, no. 2, p. 020503, 2016.
    [28] Á. Rivas, S. F. Huelga, and M. B. Plenio, “Entanglement and non-markovianity of quantum evolutions,” Physical Review Letters, vol. 105, no. 5, p. 050403, 2010.
    [29] S. Luo, S. Fu, and H. Song, “Quantifying non-markovianity via correlations,” Physical Review A, vol. 86, no. 4, p. 044101, 2012.
    [30] K.-D. Wu, Z. Hou, G.-Y. Xiang, C.-F. Li, G.-C. Guo, D. Dong, and F. Nori, “Detecting non-markovianity via quantified coherence: theory and experiments,” npj Quantum Information, vol. 6, no. 1, pp. 1–7, 2020.
    [31] X.-M. Lu, X. Wang, and C. Sun, “Quantum fisher information flow and non-markovian processes of open systems,” Physical Review A, vol. 82, no. 4, p. 042103, 2010.
    [32] S. Lorenzo, F. Plastina, and M. Paternostro, “Geometrical characterization of nonmarkovianity,” Physical Review A, vol. 88, no. 2, p. 020102, 2013.
    [33] M. J. Hall, J. D. Cresser, L. Li, and E. Andersson, “Canonical form of master equations and characterization of non-markovianity,” Physical Review A, vol. 89, no. 4, p. 042120, 2014.
    [34] G. Torre, W. Roga, and F. Illuminati, “Non-markovianity of gaussian channels,” Physical Review Letters, vol. 115, no. 7, p. 070401, 2015.
    [35] D. Chruściński, C. Macchiavello, and S. Maniscalco, “Detecting non-markovianity of quantum evolution via spectra of dynamical maps,” Physical review letters, vol. 118, no. 8, p. 080404, 2017.
    [36] B. Bylicka, D. Chruściński, and S. Maniscalco, “Non-markovianity and reservoir memory of quantum channels: a quantum information theory perspective,” Scientific reports, vol. 4, no. 1, pp. 1–7, 2014.
    [37] H.-B. Chen, P.-Y. Lo, C. Gneiting, J. Bae, Y.-N. Chen, and F. Nori, “Quantifying the nonclassicality of pure dephasing,” Nature communications, vol. 10, no. 1, pp. 1–9, 2019.
    [38] J. S. Bell, “On the problem of hidden variables in quantum mechanics,” Reviews of Modern physics, vol. 38, no. 3, p. 447, 1966.
    [39] J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, “Proposed experiment to test local hidden-variable theories,” Physical review letters, vol. 23, no. 15, p. 880, 1969.
    [40] A. K. Ekert, “Quantum cryptography and bell's theorem,” in Quantum Measurements in Optics, pp. 413–418, Springer, 1992.
    [41] T. Jennewein, C. Simon, G. Weihs, H. Weinfurter, and A. Zeilinger, “Quantum cryptography with entangled photons,” Physical review letters, vol. 84, no. 20, p. 4729, 2000.
    [42] C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and einstein-podolsky-rosen channels,” Physical review letters, vol. 70, no. 13, p. 1895, 1993.
    [43] D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature, vol. 390, no. 6660, pp. 575–579, 1997.
    [44] E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” nature, vol. 409, no. 6816, pp. 46–52, 2001.
    [45] D. C. Burnham and D. L. Weinberg, “Observation of simultaneity in parametric production of optical photon pairs,” Physical Review Letters, vol. 25, no. 2, p. 84, 1970.
    [46] P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Physical Review Letters, vol. 75, no. 24, p. 4337, 1995.
    [47] Z. Ou and L. Mandel, “Violation of bell’s inequality and classical probability in a twophoton correlation experiment,” Physical review letters, vol. 61, no. 1, p. 50, 1988.
    [48] Y. Shih and C. O. Alley, “New type of einstein-podolsky-rosen-bohm experiment using pairs of light quanta produced by optical parametric down conversion,” Physical Review Letters, vol. 61, no. 26, p. 2921, 1988.
    [49] C. E. Kuklewicz, M. Fiorentino, G. Messin, F. N. Wong, and J. H. Shapiro, “High-flux source of polarization-entangled photons from a periodically poled ktiopo 4 parametric down-converter,” Physical Review A, vol. 69, no. 1, p. 013807, 2004.
    [50] M. Fiorentino, G. Messin, C. E. Kuklewicz, F. N. Wong, and J. H. Shapiro, “Generation of ultrabright tunable polarization entanglement without spatial, spectral, or temporal constraints,” Physical Review A, vol. 69, no. 4, p. 041801, 2004.
    [51] B.-S. Shi and A. Tomita, “Generation of a pulsed polarization entangled photon pair using a sagnac interferometer,” Physical Review A, vol. 69, no. 1, p. 013803, 2004.
    [52] T. Kim, M. Fiorentino, and F. N. Wong, “Phase-stable source of polarization-entangled photons using a polarization sagnac interferometer,” Physical Review A, vol. 73, no. 1, p. 012316, 2006.
    [53] F. Wong, J. Shapiro, and T. Kim, “Efficient generation of polarization-entangled photons in a nonlinear crystal,” Laser physics, vol. 16, no. 11, pp. 1517–1524, 2006.
    [54] B.-H. Liu, L. Li, Y.-F. Huang, C.-F. Li, G.-C. Guo, E.-M. Laine, H.-P. Breuer, and J. Piilo, “Experimental control of the transition from markovian to non-markovian dynamics of open quantum systems,” Nature Physics, vol. 7, no. 12, pp. 931–934, 2011.
    [55] B.-H. Liu, D.-Y. Cao, Y.-F. Huang, C.-F. Li, G.-C. Guo, E.-M. Laine, H.-P. Breuer, and J. Piilo, “Photonic realization of nonlocal memory effects and non-markovian quantum probes,” Scientific reports, vol. 3, no. 1, pp. 1–6, 2013.
    [56] E.-M. Laine, H.-P. Breuer, J. Piilo, C.-F. Li, and G.-C. Guo, “Nonlocal memory effects in the dynamics of open quantum systems,” Physical Review Letters, vol. 108, no. 21, p. 210402, 2012.
    [57] D. Chruściński and S. Pascazio, “A brief history of the gkls equation,” arXiv preprint arXiv:1710.05993, 2017.
    [58] G. Lindblad, “On the generators of quantum dynamical semigroups,” Communications in Mathematical Physics, vol. 48, no. 2, pp. 119–130, 1976.
    [59] V. Gorini, A. Kossakowski, and E. C. G. Sudarshan, “Completely positive dynamical semigroups of n-level systems,” Journal of Mathematical Physics, vol. 17, no. 5, pp. 821–825, 1976.
    [60] G. Guarnieri, A. Smirne, and B. Vacchini, “Quantum regression theorem and nonmarkovianity of quantum dynamics,” Physical Review A, vol. 90, no. 2, p. 022110, 2014.
    [61] C.-F. Li, G.-C. Guo, and J. Piilo, “Non-markovian quantum dynamics: What does it mean?,” EPL (Europhysics Letters), vol. 127, no. 5, p. 50001, 2019.
    [62] H.-P. Breuer, E.-M. Laine, J. Piilo, and B. Vacchini, “Colloquium: Non-markovian dynamics in open quantum systems,” Reviews of Modern Physics, vol. 88, no. 2, p. 021002, 2016.
    [63] T. Kim, M. Fiorentino, and F. N. Wong, “Phase-stable source of polarization-entangled photons using a polarization sagnac interferometer,” Physical Review A, vol. 73, no. 1, p. 012316, 2006.
    [64] S. Gröblacher, T. Paterek, R. Kaltenbaek, Č. Brukner, M. Żukowski, M. Aspelmeyer, and A. Zeilinger, “An experimental test of non-local realism,” Nature, vol. 446, no. 7138, pp. 871–875, 2007.
    [65] T. Paterek, A. Fedrizzi, S. Gröblacher, T. Jennewein, M. Żukowski, M. Aspelmeyer, and A. Zeilinger, “Experimental test of nonlocal realistic theories without the rotational symmetry assumption,” Physical Review Letters, vol. 99, no. 21, p. 210406, 2007.
    [66] A. Motazedifard, S. A. Madani, J. J. Dashkasan, and N. S. Vayaghan, “Nonlocal realism tests and quantum state tomography in sagnac-based type-ii polarization-entanglement spdc-source,” Heliyon, vol. 7, no. 6, p. e07384, 2021.
    [67] A. Fedrizzi, R. Ursin, T. Herbst, M. Nespoli, R. Prevedel, T. Scheidl, F. Tiefenbacher, T. Jennewein, and A. Zeilinger, “High-fidelity transmission of entanglement over a high-loss free-space channel,” Nature Physics, vol. 5, no. 6, pp. 389–392, 2009.
    [68] N. K. Bernardes, A. Cuevas, A. Orieux, C. Monken, P. Mataloni, F. Sciarrino, and M. F. Santos, “Experimental observation of weak non-markovianity,” Scientific reports, vol. 5, no. 1, pp. 1–7, 2015.
    [69] W.-H. Zhang, G. Chen, P. Yin, X.-X. Peng, X.-M. Hu, Z.-B. Hou, Z.-Y. Zhou, S. Yu, X.J. Ye, Z.-Q. Zhou, et al., “Experimental demonstration of robust self-testing for bipartite entangled states,” npj Quantum Information, vol. 5, no. 1, pp. 1–7, 2019.
    [70] X.-M. Hu, C.-X. Huang, Y.-B. Sheng, L. Zhou, B.-H. Liu, Y. Guo, C. Zhang, W.-B.
    Xing, Y.-F. Huang, C.-F. Li, et al., “Long-distance entanglement purification for quantum communication,” Physical Review Letters, vol. 126, no. 1, p. 010503, 2021.
    [71] S. Ecker, B. Liu, J. Handsteiner, M. Fink, D. Rauch, F. Steinlechner, T. Scheidl, A. Zeilinger, and R. Ursin, “Strategies for achieving high key rates in satellite-based qkd,” npj Quantum Information, vol. 7, no. 1, pp. 1–7, 2021.
    [72] Z. M. Chaisson, P. F. Poitras, M. Richard, Y. Castonguay-Page, P.-H. Glinel, V. Landry, and D. R. Hamel, “Phase-stable source of high-quality three-photon polarization entanglement by cascaded down-conversion,” Physical Review A, vol. 105, no. 6, p. 063705, 2022.
    [73] C.-C. Kuo, S.-H. Chen, W.-T. Lee, H.-M. Chen, H. Lu, and C.-M. Li, “Quantum process capability,” Scientific reports, vol. 9, no. 1, pp. 1–12, 2019.
    [74] K.-H. Wang, S.-H. Chen, Y.-C. Lin, and C.-M. Li, “Non-markovianity of photon dynamics in a birefringent crystal,” Physical Review A, vol. 98, no. 4, p. 043850, 2018.
    [75] Y.-C. Kao, “Identification of experimental quantummechanical processes: from photonic non-markovian dynamics to nonclassical preparation of quantum remote states, a thesis submitted for the degree of master, department of engineering science, national cheng kung university,” 2020.
    [76] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information. Cambridge University Press, 2000.
    [77] M.-D. Choi, “Completely positive linear maps on complex matrices,” Linear algebra and its applications, vol. 10, no. 3, pp. 285–290, 1975.
    [78] J. Löfberg, “YALMIP: a toolbox for modeling and optimization in MATLAB®,” in Computer Aided Control Systems Design, 2004 IEEE International Symposium on, pp. 284–289, IEEE, 2004.
    [79] K.-C. Toh, M. J. Todd, and R. H. Tütüncü, “SDPT3–A Matlab software package for semidefinite-quadratic-linear programming in Matlab®, version 4.0,” Handbook on Semidefinite, Conic and Polynomial Optimization, pp. 715–754, 2012.
    [80] M. H. Rubin, D. N. Klyshko, Y. Shih, and A. Sergienko, “Theory of two-photon entanglement in type-ii optical parametric down-conversion,” Physical Review A, vol. 50, no. 6, p. 5122, 1994.
    [81] L. Wallin Sonesson, “A high brightness source of entangled photons,” 2010.
    [82] F. A. Laudenbach, Engineering Spectrally Pure Quantum States with SPDC using Periodically Poled Crystals and Pulsed Laser Sources. PhD thesis, Master thesis, 2015.
    [83] M. M. Fejer, G. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE Journal of quantum electronics, vol. 28, no. 11, pp. 2631–2654, 1992.
    [84] A. Fedrizzi, T. Herbst, A. Poppe, T. Jennewein, and A. Zeilinger, “A wavelengthtunable fiber-coupled source of narrowband entangled photons,” Optics Express, vol. 15, no. 23, pp. 15377–15386, 2007.
    [85] UQDevices, “Logic16 https://uqdevices.com/products/,” [86] Excelitas, “SPCM-AQRH https://www.excelitas.com/product/spcm-aqrh,” [87] R. H. Hadfield, “Single-photon detectors for optical quantum information applications,” Nature photonics, vol. 3, no. 12, pp. 696–705, 2009.
    [88] S.-H. Chen, Y.-C. Kao, N. Lambert, C. Hsu, B.-Y. Lee, Y.-S. Liu, Y.-N. Chen, F. Nori, and C.-M. Li, “Preparing remote states for genuine quantum networks,” In preparation.
    [89] B.-Y. Lee, “Experimental photonic quantum tomography using untrusted devices„” A Thesis Submitted for the Degree of Master, Department of Engineering Science, National Cheng Kung University, 2022.
    [90] S.-H. Chen, H. Lu, Q.-C. Sun, Q. Zhang, Y.-A. Chen, and C.-M. Li, “Discriminating quantum correlations with networking quantum teleportation,” Physical Review Research, vol. 2, no. 1, p. 013043, 2020.
    [91] B.-Y. Lee, Y.-S. Liu, C.-H. Chu, C. Hsu, S.-H. Chen, and C.-M. Li, “Experimental photonic quantum state tomography using untrusted devices,” In preparation.
    [92] B. Dakić, Y. O. Lipp, X. Ma, M. Ringbauer, S. Kropatschek, S. Barz, T. Paterek, V. Vedral, A. Zeilinger, Č. Brukner, et al., “Quantum discord as resource for remote state preparation,” Nature Physics, vol. 8, no. 9, pp. 666–670, 2012.
    [93] B. M. Terhal and G. Burkard, “Fault-tolerant quantum computation for local nonmarkovian noise,” Physical Review A, vol. 71, no. 1, p. 012336, 2005.
    [94] D. Aharonov, A. Kitaev, and J. Preskill, “Fault-tolerant quantum computation with longrange correlated noise,” Physical Review Letters, vol. 96, no. 5, p. 050504, 2006.
    [95] D. Wu, Q. Zhao, X.-M. Gu, H.-S. Zhong, Y. Zhou, L.-C. Peng, J. Qin, Y.-H. Luo, K. Chen, L. Li, et al., “Robust self-testing of multiparticle entanglement,” Physical Review Letters, vol. 127, no. 23, p. 230503, 2021.

    下載圖示 校內:2025-09-30公開
    校外:2025-09-30公開
    QR CODE