| 研究生: |
羅博允 Law, Po-Yun |
|---|---|
| 論文名稱: |
探討偏遠地區需求反應式運輸之服務覆蓋:以高雄市為例 Service Coverage of Demand-Responsive Transportation in Rural Area: A Case Study in Kaohsiung City |
| 指導教授: |
鄭永祥
Cheng, Yung-Hsiang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 交通管理科學系 Department of Transportation and Communication Management Science |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 66 |
| 中文關鍵詞: | 需求反應式運輸系統 、服務覆蓋 、公平性 、多目標最佳化 、NSGA-II |
| 外文關鍵詞: | Demand-responsive transportation, Service coverage, Equity, Multi-objective optimization, NSGA-II |
| 相關次數: | 點閱:181 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
偏遠地區至今一直存有公共運輸選擇少、服務覆蓋稀少以及公共運輸分布不均等問題。近來偏遠地區的公共運輸普遍提倡以需求反應式運輸系統(Demand-Responsive Transportation System, DRTS)來經營。過往研究在探討計程車或DRTS分派最佳化時,多以營運者成本作為主要考量,較少考量與旅客權益相關的服務覆蓋;本研究除了營運者成本,亦將旅客服務覆蓋,以及旅客間的公平性等目標納入考量,以使用多目標最佳化求取不同目標權衡之下的派車策略,並區分為無共乘、共乘兩種模式以比較成果。為快速求取多目標之下近似於最佳解的規劃,本研究使用能降低求解複雜度的NSGA-II演算法進行求解及分析。
從結果可知本模型的求解時間於DRTS營運日前一天作規劃使用是可行的。此外,DRTS使用共乘模式經營將比無共乘模式還要更能提升服務覆蓋。其餘分派策略與影響因子之間的關聯性,可供公家機關進行調度調整,以求令目標的滿足程度提升。
Public transportation in rural areas still suffers from the problems of few choices and less service coverage. The equity issue has also become an emerging topic of transportation in rural areas. Demand-Responsive Transportation (DRT) systems have been promoted in rural areas recently, as they can cover rural population in broad spectrum and they can adjust timetable and routes to deal with dispersed demand. When past researches proposed models for dispatching strategies optimization of DRT and taxis, most of them focus on operating cost and less of them focus on service coverage. In this study, we take service coverage and equity of passengers into account, along with operating cost. We apply multi-objective optimization to find the scheduling strategies under these different objectives, and compare the results in non ride-sharing mode with those in ride-sharing mode. To get the planning strategies near the Pareto optimal efficiently, we use non-dominated sorting genetic algorithm-II (NSGA-II) to solve the solution and then analyze. Analytical results demonstrate that these models can be used for planning in an acceptable time span a day before operation, and service coverage of DRT in ride-sharing mode is better than non ride-sharing mode. Other results are also provided for information of local transport authorities to adjust operating policy of DRT.
Billhardt, H., Fernández, A., Ossowski, S., Palanca, J., & Bajo, J. (2019). Taxi dispatching strategies with compensations. Expert Systems with Applications, 122, 173-182. doi:https://doi.org/10.1016/j.eswa.2019.01.001
Bruni, M. E., Guerriero, F., & Beraldi, P. (2014). Designing robust routes for demand-responsive transport systems. Transportation Research Part E: Logistics and Transportation Review, 70, 1-16. doi:https://doi.org/10.1016/j.tre.2014.06.002
Cesario, F. J. (1976). Value of Time in Recreation Benefit Studies. Land Economics, 52(1), 32-41. doi:10.2307/3144984
Chen, C., Achtari, G., Majkut, K., & Sheu, J.-B. (2017). Balancing equity and cost in rural transportation management with multi-objective utility analysis and data envelopment analysis: A case of Quinte West. Transportation Research Part A: Policy and Practice, 95, 148-165. doi:https://doi.org/10.1016/j.tra.2016.10.015
Cheng, Y.-H., & Liang, Z.-X. (2014). A strategic planning model for the railway system accident rescue problem. Transportation Research Part E: Logistics and Transportation Review, 69, 75-96. doi:https://doi.org/10.1016/j.tre.2014.06.005
Deb, K. (2001). Multi-objective optimization using evolutionary algorithms (Vol. 16): John Wiley & Sons.
Deb, K. (2014). Multi-objective Optimization. In E. K. Burke & G. Kendall (Eds.), Search Methodologies: Introductory Tutorials in Optimization and Decision Support Techniques (pp. 403-449). Boston, MA: Springer US.
Deb, K., Amrit, P., Sameer, A., & Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2), 182-197. doi:10.1109/4235.996017
Langford, M., Fry, R., & Higgs, G. (2012). Measuring transit system accessibility using a modified two-step floating catchment technique. International Journal of Geographical Information Science, 26(2), 193-214. doi:10.1080/13658816.2011.574140
Li, B., & Szeto, W. Y. (2019). Taxi service area design: Formulation and analysis. Transportation Research Part E: Logistics and Transportation Review, 125, 308-333. doi:https://doi.org/10.1016/j.tre.2019.03.004
Liang, X., Correia, G. H. d. A., & van Arem, B. (2016). Optimizing the service area and trip selection of an electric automated taxi system used for the last mile of train trips. Transportation Research Part E: Logistics and Transportation Review, 93, 115-129. doi:https://doi.org/10.1016/j.tre.2016.05.006
Murray, A. T., Davis, R., Stimson, R. J., & Ferreira, L. (1998). Public Transportation Access. Transportation Research Part D: Transport and Environment, 3(5), 319-328. doi:https://doi.org/10.1016/S1361-9209(98)00010-8
Sorensen, P., & Church, R. (2010). Integrating expected coverage and local reliability for emergency medical services location problems. Socio-Economic Planning Sciences, 44(1), 8-18. doi:https://doi.org/10.1016/j.seps.2009.04.002
Srinivas, N., & Deb, K. (1994). Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms. Evolutionary Computation, 2(3), 221-248. doi:10.1162/evco.1994.2.3.221
Šťastná, M., & Vaishar, A. (2017). The relationship between public transport and the progressive development of rural areas. Land Use Policy, 67, 107-114. doi:https://doi.org/10.1016/j.landusepol.2017.05.022
Sultana, Z., Mishra, S., Cherry, C. R., Golias, M. M., & Tabrizizadeh Jeffers, S. (2018). Modeling frequency of rural demand response transit trips. Transportation Research Part A: Policy and Practice, 118, 494-505. doi:https://doi.org/10.1016/j.tra.2018.10.006
Takeuchi, R., Student, G., Nakamura, F., Professor, A., Okura, I., & Hiraishi, H. (2003). Feasibility Study on Demand Responsive Transport systems (DRTS).
Wang, X. D., Hirsch, C., Kang, S., & Lacor, C. (2011). Multi-objective optimization of turbomachinery using improved NSGA-II and approximation model. Computer Methods in Applied Mechanics and Engineering, 200(9), 883-895. doi:https://doi.org/10.1016/j.cma.2010.11.014
Wardman, M. (2004). Public transport values of time. Transport Policy, 11(4), 363-377. doi:https://doi.org/10.1016/j.tranpol.2004.05.001
交通部運輸研究所. (2011). 強化公路公共運輸發展政策研析.
交通部運輸研究所. (2019). 需求反應式公共運輸服務(DRTS)執行成果之檢討.
吳明穎, & 張良正. (2004). 整合性地下水營運之最佳規劃研究. Retrieved from http://hdl.handle.net/11536/48945
邱裕鈞, 王銘德, & 黃彥斐. (2012). 臺灣地區公路客運供給與補貼之區域資源分配差異分析. 運輸計劃季刊, 41(4), 399-434.
皇冠大車隊. (2020). 高雄DRTS-T502線路線時刻表. Retrieved from https://www.crowntaxi.com.tw/wp/3886/t502
胡凱傑, 馮正民, & 王鈞暐. (2013). 偏遠地區公路客運補貼路線之營運績效評估. 運輸計劃季刊, 42(3), 275-303.
高雄市政府交通局. (2020). 公車式小黃服務計畫簡介. Retrieved from https://www.tbkc.gov.tw/Service/PublicTransport/Taxis?ID=db7194a9-88c3-4277-9343-6e080d7493e8
張有恆. (2018). 都市公共運輸: 華泰文化事業股份有限公司.
校內:2025-08-27公開