研究生: |
曾國立 Tseng, Kuo-Li |
---|---|
論文名稱: |
整合資訊擴散技術之適應性類神經模糊推論系統 Integrating the Mega-Trend-Diffusion Technique with the Adaptive Network-Based Fuzzy Inference System |
指導教授: |
利德江
Li, Der-Chiang |
學位類別: |
碩士 Master |
系所名稱: |
管理學院 - 高階管理碩士在職專班(EMBA) Executive Master of Business Administration (EMBA) |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 中文 |
論文頁數: | 42 |
中文關鍵詞: | 適應性類神經模糊推論系統 、整體趨勢擴散技術 、模糊分群法 |
外文關鍵詞: | ANFIS, mega-trend-diffusion technique, fuzzy clustering |
相關次數: | 點閱:101 下載:2 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
不同於以往大多數針對確定性資料的學習方法,自模糊集合理論發表後,使得如人類語意之不確性資料獲得學習的可能。模糊推論系統(FIS)基於此開發使得不確定性資料獲得系統性的學習,然其需藉由調整參數組的方式以獲取最佳學習結果,而此參數組包含前部件以及後部件,其中前部件參數包含輸入屬性之隸屬函數(MF)數量、以及描述其形狀與值域的參數值,而後部件參數則為依據前部件之修訂結果所建構之線性模式係數。Jang則於1993年提出結合類神經網路(ANN)之疊代學習法修訂FIS之參數組,稱為適應性類神經模糊推論系統(ANFIS)。雖ANFIS可藉由ANN取得最優之前部件參數而獲得最優結果,然初始前部件參數之MF設定值亦會影響其最終結果。此外,在分類問題上,MF之個數可依據輸出屬性之可能類別值數量決定,然在數值預測問題上,卻無法確切決定此數量。因此本研究提出一個系統性的流程以決定此初始前部件的參數設定,首先使用模糊C-means分群法搭配模糊側影係數決定最適分群數為MF數量,再使用整體趨勢擴散技術對此時樣本分群結果進行模糊MF之參數值推估。實驗階段,本研究藉由從面板產業取得之實務資料進行測試,其結果顯示確能有效改善ANFIS對於數值預測問題之預測準確度。
The Adaptive Network-Based Fuzzy Inference System (ANFIS) is widely applied to classification and numerical forecasting problems nowadays. Although the ANFIS is developed to obtain the optimal results of FIS with artificial neural networks by adapting the initial antecedent parameters in FIS, the profiles of fuzzy membership functions, how to well set the initial antecedent parameters still can affect the learning results. Focusing on the numerical forecasting problems, this study develops a systematic procedure, which employs the Fuzzy C-means with the fuzzy silhouette coefficients to identify the locations of observations with the most suitable clustering sizes, and then based on which the mega-trend-diffusion technique is taken to estimate the membership functions as the initial antecedent parameters for ANFIS. In the experiment, a real case taken from one of the leading TFT-LCD (thin-film transistor liquid-crystal displays) manufacturers is examined. The experiment results reveal that the predictive preciseness of ANFIS is improved when the initial antecedent parameters are set with the proposed procedure.
Atsalakis, G. S., & Valavanis, K. P. (2009). Forecasting stock market short-term trends using a neuro-fuzzy based methodology. Expert Systems with Applications, 36(7), 10696-10707.
Boyacioglu, M. A., & Avci, D. (2010). An Adaptive Network-Based Fuzzy Inference System (ANFIS) for the prediction of stock market return: The case of the Istanbul Stock Exchange. Expert Systems with Applications, 37(12), 7908-7912.
Bezdek, J. C. (1973). Fuzzy Mathematics in Pattern Classification. Applied Math. Center, Cornell University.
Campello, R. J. G. B., & Hruschka, E. R. (2006). A fuzzy extension of the silhouette width criterion for cluster analysis. Fuzzy Sets and Systems, 157(21), 2858-2875.
Ching-Hsue, C., Liang-Ying, W., & You-Shyang, C. (2009). Fusion ANFIS models based on multi-stock volatility causality for TAIEX forecasting. Neurocomputing, 72(16-18), 3462-3468.
Collazo-Cuevas, J. I., Aceves-Fernandez, M. A., Gorrostieta-Hurtado, E., Pedraza-Ortega, J. C., Sotomayor-Olmedo, A., & Delgado-Rosas, M. (2010). Comparison Between Fuzzy C-means Clustering and Fuzzy Clustering Subtractive in Urban Air Pollution. 2010 20th International Conference on Electronics Communications and Computers (CONIELECOMP 2010), 174-179.
Esfahanipour, A., & Aghamiri, W. (2010). Adapted Neuro-Fuzzy Inference System on indirect approach TSK fuzzy rule base for stock market analysis. Expert Systems with Applications, 37(7), 4742-4748.
Huang, C. F. (1997). Principle of information. Fuzzy Sets and Systems, 91(1), 69-90.
Huang, C. F., & Moraga, C. (2004). A diffusion-neural-network for learning from small samples. International Journal of Approximate Reasoning, 35(2), 137-161.
Jang, J. S. R. (1993). ANFIS: adaptive-network-based fuzzy inference system. IEEE Transactions on Systems, Man and Cybernetics, 23(3), 665-685.
Karaboga, D., & Kaya, E. (2013, 19-21 June 2013). Training ANFIS using artificial bee colony algorithm. Paper presented at the Innovations in Intelligent Systems and Applications (INISTA), 2013 IEEE International Symposium on.
Li, D. C., Chen, C. C., Chang, C. J., & Chen, W. C. (2012). Employing Box-and-Whisker plots for learning more knowledge in TFT-LCD pilot runs. International Journal of Production Research, 50(6), 1539-1553.
Li, D. C., Hsu, H. C., Tsai, T. I., Lu, T. J., & Hu, S. C. (2007a). A new method to help diagnose cancers for small sample size. Expert Systems with Applications, 33(2), 420-424.
Li, D. C., Huang, W. T., Chen, C. C., & Chang, C. J. (2013). Employing virtual samples to build early high-dimensional manufacturing models. International Journal of Production Research, 51(11), 3206-3224.
Li, D. C., Huang, W. T., Chen, C. C., & Chang, C. J. (2014). Employing box plots to build high-dimensional manufacturing models for new products in TFT-LCD plants. Neurocomputing(0). doi: http://dx.doi.org/ 10.1016/ j.neucom.2014.03.043
Li, D. C., Tsai, T. I., & Shi, S. (2009). A prediction of the dielectric constant of multi-layer ceramic capacitors using the mega-trend-diffusion technique in powder pilot runs: case study. International Journal of Production Research, 47(1), 51-69.
Li, D. C., Wu, C., & Chang, F. M. (2006a). Using data continualization and expansion to improve small data set learning accuracy for early flexible manufacturing system (FMS) scheduling. International Journal of Production Research, 44(21), 4491-4509.
Li, D. C., Wu, C. S., & Chang, F. M. M. (2005). Using data-fuzzification technology in small data set learning to improve FMS scheduling accuracy. International Journal of Advanced Manufacturing Technology, 27(3-4), 321-328.
Li, D. C., Wu, C. S., Tsai, T. I., & Chang, F. M. M. (2006b). Using mega-fuzzification and data trend estimation in small data set learning for early FMS scheduling knowledge. Computers & Operations Research, 33(6), 1857-1869.
Li, D. C., Wu, C. S., Tsai, T. I., & Lina, Y. S. (2007b). Using mega-trend-diffusion and artificial samples in small data set learning for early flexible manufacturing system scheduling knowledge. Computers & Operations Research, 34(4), 966-982.
Papari, M. M., Yousefi, F., Moghadasi, J., Karimi, H., & Campo, A. (2011). Modeling thermal conductivity augmentation of nanofluids using diffusion neural networks. International Journal of Thermal Sciences, 50(1), 44-52.
Rousseeuw, P. J. (1987). Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. Journal of Computational and Applied Mathematics, 20(0), 53-65.
Smiti, A., & Eloudi, Z. (2013). Soft DBSCAN: Improving DBSCAN clustering method using fuzzy set theory. Paper presented at the Human System Interaction (HSI), 2013 The 6th International Conference on.
Sugeno, M., & Tanaka, K. (1991). Successive identification of a fuzzy model and its applications to prediction of a complex system. Fuzzy Sets and Systems, 42(3), 315-334.
Tukey, J. W. (1977). Exploratory data analysis: Reading (MA): Addison-Wesley.
Wang, Y., & Witten, I. (1997). Inducing Model Trees for Continuous Classes. Paper presented at the Proceedings of the Poster Papers of the European Conference on Machine Learning, Prague, Czech Republic.
Yi-Chung, H., Ruey-Shun, C., & Gwo-Hshiung, T. (2003). Finding fuzzy classification rules using data mining techniques. Pattern Recognition Letters, 24(1-3), 509-519.
Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338-353.