| 研究生: |
張世翰 Chang, Shih-Han |
|---|---|
| 論文名稱: |
三元乙丙橡膠/氯化聚乙烯/聚氨酯之混摻形態與交聯特性關係之研究 Study of morphology and crosslinking properties of ethylene-propylene diene monomer/chlorinated polyethylene/polyurethane blends |
| 指導教授: |
王紀
Wang, Chi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 113 |
| 中文關鍵詞: | 三元乙丙橡膠 、氯化聚乙烯 、聚氨酯 、形態 、交聯特性 |
| 外文關鍵詞: | ethylene-propylene diene monomer, chlorinated polyethylene, polyurethane, morphology, crosslinking properties |
| 相關次數: | 點閱:74 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
內容主要以三元乙丙橡膠(ethylene-propylene diene monomer, EPDM)、聚氨酯(polyurethane, PU)與氯化聚氯乙烯(chlorinated polyethylene, cPE)三成分系統中添加2 phr過氧化二異丙苯(dicumyl peroxide, DCP)為交聯劑經塑譜儀混煉後之混摻形態觀察,與混摻經高溫交聯後,交聯密度量測為主。透過交聯密度量測與材料機械性質的相關性做一探討;此外,亦著重交聯反應過程中反應動力學的研究。
以掃描式電子顯微鏡進行混摻物交聯前後的形態觀察,得知混摻均勻性;以流變儀進行交聯反應動力學的分析;以天秤量測方式,求得交聯程度(degree of crosslinking)。並以萬能拉力機配合Mooney-Rivlin方式求得交聯密度(density of crosslinking),隨cPE含量增加,交聯密度下降,機械性質提升。
Ethylene-propylene diene monomer (EPDM), polyurethane (PU) and chlorinated polyethylene (cPE) ternary blend added 2 phr dicumyl peroxide (DCP) which as a crosslinking agent were kneaded by brabender, and the morphology before and after crosslinking were observed. As blends were under high temperature, crosslinking reaction will occur, then the density of crosslinking were measured. The relationship between density of crosslinking and mechanical properties were discussed. Besides, we also focus on the kinetics of crosslinking reaction.
The uncrosslinked and crosslinked blends were observed by scanning electron microscope (SEM), we may know the dispersion of blends from the results. The kinetics of crosslinking reaction were analyzed by rheometer. The degree of crosslinking were measured by weighing. We use universal tensile testing machine to measure the density of crosslinking by Mooney-Rivlin equation and compare mechanical properties of crosslinked blends with different cPE contents. We found that increasing cPE content will improve mechanical properties, but density of crosslinking decreases.
[1]邱曾盛, ”EPR橡膠應用與市場發展淺析”, 166, 高分子工業 (2013)
[2]K. Nakayama, T. Watanabe, Y. Ohtake, M. Furukawa, “Influence of residual peroxide on the degradation of peroxide-crosslinked ethylene-propylene-diene rubber”, Journal of Applied Polymer Science 108, 2578 (2008).
[3]蘇宏達, ”熱可塑性聚氨酯彈性體生產與性能”, 159, 高分子工業 (2012)
[4]E. E. Gruber, O. C. Keplinger, “Cure of polyurethane elastomers with peroxides”, Industrial and Engineering Chemistry 51, 151 (1959).
[5]R. D. A. Paulmer, C. S. Shah, M. J. Patni, M. V. Pandya, “Effect of crosslinking agents on the structure and properties of polyurethane millable elastomer composites”, Journal of Applied Polymer Science 43, 1953 (1991).
[6]L. Born, H. Hespe, J. Crone, K. H. Wolf, “The physical crosslinking of polyurethane elastomers studied by X-ray investigation of model urethanes”, Colloid and Polymer Science 260, 819 (1982).
[7]N. Grassie, M. Zulfiqar, M. I. Guy, “Thermal degradation of a series of polyester polyurethanes”, Journal of Polymer Science Part A: Polymer Chemistry 18, 265 (1980).
[8]H. J. Oswald, E. T. Kubu, “Structure property relationships of chlorinated polyethylene”, SPE Transactions, 168 (1963).
[9]L. T. Wang, “Crosslinked chlorinated polyethylene”, U. S. Patent Office (1966).
[10]R. Ding, A. I. Leonov, “A kinetic model for sulfur accelerated vulcanization of a natural rubber compound”, Journal of Applied Polymer Science 61, 455 (1996).
[11]A. N. Gent, J. A. Hartwell, “Effect of carbon black on crosslinking”, Rubber Chemistry and Technology 76, 517 (2003).
[12]C. Wang, H. S. Chien, K. W. Yan, C. L. Hung, K. L. Hung, “Correlation between processing parameters and microstructure of electrospun poly(D,L-lactic acid) nanofibers”, Polymer 50, 6100 (2009).
[13]S. E. Gwaily, M. M. Badawy, H. H. Hassan, M. Madani, “Influence of thermal aging on crosslinking density of boron carbide/natural rubber composites”, Polymer Testing 22, 3 (2003).
[14]K. C. Manoj, P. Kumari, G. Unnikrishnan, ”Cure characteristics, swelling behaviors, and mechanical properties of carbon black filler reinforced EPDM/NBR blend system”, Journal of Applied Polymer Science 120, 2654 (2011).
[15]S. Gopalakrishnan, T. L. Fernando, “Bio-based thermosetting tough polyurethane”, Der Chemica Sinica 2, 55 (2011).
[16]V. Zamboni, U. Flisi, G. Giunchi, “Crosslink density evaluation of EPDM vulcanizates”, Rubber Chemistry and Technology 44, 1109 (1971).
[17]I. S. Kolesov, H. J. Radusch, “Multiple shape-memory behavior and thermal-mechanical properties of peroxide cross-linked blends of linear and short-chain branched polyethylenes”, eXPRESS Polymer Letters 2, 461 (2008).
[18]X. Hu, H. Gao, X. Zhou, Y. Cui, H. Ge, “A new approach to rubber reinforcement”, The Royal Society of Chemistry 4, 13662 (2014).
[19]S. Rooj, A. Das, G. Heinrich, “Preintercalation of an organic accelerator into nanogalleries and preparation of ethylene propylene diene terpolymer rubber-clay nanocomposites”, Polymer Journal 43, 285 (2011).
[20]J. Ma, Y. X. Feng, J. Xu, M. L. Xiong, Y. J. Zhu, L. Q. Zhang, “Effects of compatibilizing agent and in situ fibril on the morphology, interface and mechanical properties of EPDM/nylon copolymer blends”, Polymer 43, 937 (2002).
[21]I. J. Hwang, M. H. Lee, B. K. Kim, ”Preparation and properties of SAN/EPDM/cPE ternary blends”, European Polymer Journal 34, 671 (1998).
[22]C. P. Liu, J. H. Lin, “Kinetic study on cross-linking and blowing behavior of EVA/EPDM/cPE high elasticity material”, Journal of Applied Polymer Science 106, 897 (2007).
[23]M. Maity, C. K. Das, “Speciality polymer blends of polyurethane elastomers and chlorinated polyethylene rubber (peroxide cure)”, Polymer International 49, 757 (2000).
[24]C. J. Sheehan, A. L. Bisio, “Polymer/solvent interaction parameters”, Rubber Chemistry and Technology 39, 149 (1966).
[25]J. Brandrup, E. H. Immergut, E. A. Grulke, “Polymer handbook 4 edition”, WILEY-INTERSCIENCE, New York.