| 研究生: |
周品翔 Chou, Pin-Hsiang |
|---|---|
| 論文名稱: |
蝦類唐氏綜合症細胞黏附分子之鑑定與分析 Identification and characterization of shrimp Down syndrome cell adhesion molecule |
| 指導教授: |
王涵青
Wang, Han-Ching |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 生物科技研究所 Institute of Biotechnology |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 英文 |
| 論文頁數: | 39 |
| 中文關鍵詞: | 白蝦 、唐氏综合症細胞黏附分子 、免疫球蛋白超家族 、類專一性免疫系統 、白點症病毒 |
| 外文關鍵詞: | Litopenaeus vannamei, Down syndrome cell adhesion molecule (Dscam), Immunoglobulin superfamily, Alternative adaptive immune system, WSSV |
| 相關次數: | 點閱:194 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Down syndrome cell adhesion molecule (Dscam)於近年來被認為是無脊椎動物類專一性免疫的關鍵分子,本研究鑑定出第一個蝦類Dscam,命名為白蝦Dscam (LvDscam),其後進行此分子特性分析。研究結果顯示,LvDscam具有不同於其他無脊椎動物Dscam的獨特性,包括LvDscam可產生僅具有胞外域而缺少穿膜區及胞質尾之缺尾形式(tail-less form);LvDscam主要於免疫相關組織中表現,而非如同其他無脊椎動物Dscam表現於神經組織;親源演化樹分析顯示,LvDscam在無脊椎動物Dscam分群中,被一獨立演化枝,與昆蟲綱及甲殼綱的水蚤分開。在LvDscam胞外區之功能性區域結構則與其他物種Dscam相同,皆具有10個immunoglobulin (Ig) domain及6個fibronectin type III (FNIII) domain,但較特別則為其具有一細胞吸附序列(RGD motif)。我們也針對白蝦在無WSSV感染、WSSV潛伏感染、WSSV急性感染等情況下,血球細胞表現Dscam之表現型態進行分析,在三組實驗組中共選殖62個clone進行定序,結果顯示,LvDscam在Ig2及Ig3的N端及整段Ig7至少具有23、30及13種isoform的存在,預估可產生8,970種不同組合型態,經觀測推論LvDscam之Ig2及Ig3或許在蝦類WSSV專一性免疫反應中比起Ig7扮演著更重要的功能。我們也推論不具尾端、分泌型的Dscam或許不具引領神經發育的功能,但在蝦類之類專一性免疫反應中可能扮演著重要的角色。
It has recently been suggested that Dscam (Down syndrome cell adhesion molecule), a member of the immunoglobulin-superfamily (IgSF), plays an essential role in the adaptive immune system of invertebrates. Here, we isolated and characterized the first shrimp Dscam from Litopenaeus vannamei. The LvDscam protein had an extracellular domain but lacked the expected transmembrane domain and cytoplasmic tail, both of which are found in all other members of the Dscam family (and may also be found in other L. vannamei Dscams that have not yet been isolated). In nervous tissue, expression levels of LvDscam were unexpectedly low. Phylogenetic analysis suggests that LvDscam is far from the Dscams found in other invertebrates. Nevertheless, the domain architecture of the extracellular region of LvDscam is similar to other invertebrate Dscams, and it exhibits the typical configuration of 10 immunoglobulin (Ig) domains, 6 fibronectin type 3 domains (FNIII) and one cell attachment sequence (RGD). Cloning and characterization of a total of 62 cDNAs from hemocytes collected from WSSV-free, WSSV-persistent and WSSV–acute-infected shrimp revealed 23 alternative amino acid sequences in the N-terminal of Ig2, 30 in the N-terminal of Ig3 and 13 in the Ig7 domain. This implies that LvDscam can potentially encode at least 8,970 unique isoforms. Further analysis suggested that the LvDscam Ig2 and Ig3 regions are more functionally important than Ig7 in the shrimp’s specific immune response against WSSV. We discuss how this tail-less, soluble Dscam can still play an active role in alternative adaptive immune response even while its axonal guidance functionality may be impaired.
References
1. Agaisse H. An adaptive immune response in Drosophila? Cell Host Microbe 2007;1:91-93.
2. Kurtz J, Franz K. Innate defence: evidence for memory in invertebrate immunity. Nature 2003;425:37-38.
3. Du Pasquier L. Insects diversify one molecule to serve two systems. Science 2005;309:1826-1827.
4. Kurtz J, Armitage S A. Alternative adaptive immunity in invertebrates. Trends Immunol 2006;27:493-496.
5. Rowley AF, Powell A. Invertebrate immune systems specific, quasi-specific, or nonspecific? J. Immunol 2007;179:7209-7214.
6. Watson FL, Püttmann-Holgado R, Thomas F, Lamar DL, Hughes M, Kondo M, Rebel VI, Schmucker D. Extensive diversity of Ig-superfamily proteins in the immune system of insects. Science 2005;309:1874-1878.
7. Sadd BM, Schmid-Hempel P. Insect immunity shows specificity in protection upon secondary pathogen exposure. Curr Biol 2006;16:1206-1210.
8. Dong Y, Taylor HE, Dimopoulos G. AgDscam, a hypervariable immunoglobulin domain-containing receptor of the Anopheles gambiae innate immune system. PLoS Biol 2006;4:e229.
9. Honey K. Insect immunity: Insect immune receptor shows variety. Nature Reviews Immunology 2005; 5:743.
10. Namikoshi A, Wu JL, Yamashita T, Nishizawa T, Nishioka T, Arimoto M, Muroga K. Vaccination trials with Penaeus japonicus to induce resistance to white spot syndrome virus. Aquaculture 2004;229:25-35.
11. Witteveldt J, Vlak JM, van Hulten MC. Protection of Penaeus monodon against white spot syndrome virus using a WSSV subunit vaccine. Fish Shellfish Immunol 2004;16:571-579.
12. Melena J, Bayot B, Betancourt I, Amano Y, Panchana F, Alday V, Calderón J, Stern S, Roch P, Bonami JR. Pre-exposure to infectious hypodermal and haematopoietic necrosis virus or to inactivated white spot syndrome virus (WSSV) confers protection against WSSV in Penaeus vannamei (Boone) post-larvae. J Fish Dis 2006;29:589-600.
13. Johnson KN, van Hulten MC, Barnes AC. Vaccination of shrimp against viral pathogens: phenomenology and underlying mechanisms. Vaccine 2008;26:4885-4892.
14. Stuart LM, Ezekowitz RA. Phagocytosis and comparative innate immunity: learning on the fly. Nat Rev Immunol 2008;8:131-141.
15. Schmucker D, Chen B. Dscam and DSCAM: complex genes in simple animals, complex animals yet simple genes. Genes Dev 2009; 23:147-156.
16. Marchalonis JJ, Hohman VS, Kaymaz H, Schluter SF, Edmundson AB. Cell surface recognition and the immunoglobulin superfamily. Ann N Y Acad Sci 1994;712:20-33.
17. Wojtowicz WM, Flanagan JJ, Millard SS, Zipursky SL, Clemens JC. Alternative splicing of Drosophila Dscam generates axon guidance receptors that exhibit isoform-specific homophilic binding. Cell 2004;118:619-633.
18. Garver LS, Xi Z, Dimopoulos G. Immunoglobulin superfamily members play an important role in the mosquito immune system. Dev Comp Immunol 2008;32:519-531.
19. Yamakawa K, Huot YK, Haendelt MA, Hubert R, Chen XN, Lyons GE, Korenberg JR. DSCAM: a novel member of the immunoglobulin superfamily maps in a Down syndrome region and is involved in the development of the nervous system. Hum Mol Genet 1998;7:227-237.
20. Agarwala KL, Ganesh S, Amano K, Suzuki T, Yamakawa K. DSCAM, a highly conserved gene in mammals, expressed in differentiating mouse brain. Biochem. Biophys Res Commun 2001;281:697-705.
21. Schmucker D, Clemens JC, Shu H, Worby CA, Xiao J, Muda M, Dixon JE, Zipursky SL. Drosophila Dscam is an axon guidance receptor exhibiting extraordinary molecular diversity. Cell 2000;101:671-684.
22. Graveley BR, Kaur A, Gunning D, Zipursky SL, Rowen L, Clemens JC. The organization and evolution of the dipteran and hymenopteran Down syndrome cell adhesion molecule (Dscam) genes. RNA 2004;10:1499-1506.
23. Brites D, McTaggart S, Morris K, Anderson J, Thomas K, Colson I, Fabbro T, Little TJ, Ebert D, Du Pasquier L. The Dscam homologue of the crustacean Daphnia is diversified by alternative splicing like in insects. Mol Biol Evol 2008;25:1429-1439.
24. Liu H, Jiravanichpaisal P, Söderhäll I, Cerenius L, Söderhäll K. Antilipopolysaccharide factor interferes with white spot syndrome virus replication in vitro and in vivo in the crayfish Pacifastacus leniusculus. J Virol 2006;80:10365-10371.
25. Wang CH, Lo CF, Leu JH, Chou CM, Yeh PY, Chou HY, Tung MC, Chang CF, Su MS, Kou G.H. Purification and genomic analysis of baculovirus associated with white spot syndrome (WSBV) of Penaeus monodon. Dis Aquat Organ 1995;23:239-242.
26. Wang HC, Wang HC, Kou GH, Lo CF, Huang WP. Identification of icp11, the most highly expressed gene of shrimp white spot syndrome virus (WSSV). Dis Aquat Organ 2007;74: 179-189.
27. Cherry S, Silverman N. Host-pathogen interactions in drosophila: new tricks from an old friend. Nat Immunol. 2006;7:911-917.
28. Boehm T. Two in one: dual function of an invertebrate antigen receptor. Nat Immunol 2007;8:1031-1033.
29. Liu G, Li W, Wang L, Kar A, Guan KL, Rao Y, Wu JY. DSCAM functions as a netrin receptor in commissural axon pathfinding. Proc Natl Acad Sci U S A 2009;106:2951-2956.
30. Barrow AD, Trowsdale J. You say ITAM and I say ITIM, let's call the whole thing off: the ambiguity of immunoreceptor signaling. Eur J Immunol 2006;36:1646-1653.
31. Nakajima Y, Taylor D, Yamakawa M. Involvement of antibacterial peptide defensin in tick midgut defense. Exp Appl Acarol 2002; 28:135-140.
32. Loker ES, Adema CM, Zhang SM, Kepler TB. Invertebrate immune systems--not homogeneous, not simple, not well understood. Immunol Rev 2004;198:10-24.
33. Pongsomboon S, Wongpanya R, Tang S, Chalorsrikul A, Tassanakajon A. Abundantly expressed transcripts in the lymphoid organ of the black tiger shrimp, Penaeus monodon, and their implication in immune function. Fish Shellfish Immunol 2008;25:485-493.
34. Lamprou I, Mamali I, Dallas K, Fertakis V, Lampropoulou M, Marmaras VJ. Distinct signaling pathways promote phagocytosis of bacteria, latex beads and lipopolysaccharide in medfly haemocytes. Immunology 2007;121:314-327.
35. Zhuang S, Kelo L, Nardi JB, Kanost MR. Multiple alpha subunits of integrin are involved in cell-mediated responses of the Manduca immune system. Dev Comp Immunol 2008;32:365-379.
36. Rothwangl KB, Rong L. Analysis of a conserved RGE/RGD motif in HCV E2 in mediating entry. Virol J 2009;6:12.
37. Wu JL, Nishioka T, Mori K, Nishizawa T, Muroga K. A time-course study on the resistance of Penaeus japonicus induced by artificial infection with white spot syndrome virus. Fish Shellfish Immuno 2002;13:391-403.
38. Schulenburg H, Boehnisch C, Michiels NK. How do invertebrates generate a highly specific innate immune response. Mol Immunol 2007;44:3338-3.
校內:立即公開