| 研究生: |
陳世欣 Chen, Shih-Hsin |
|---|---|
| 論文名稱: |
結合最大速度導向以及比例式公平導向排程器在感知無線電中之效益 Effects of Combining Max-Rate and Proportional-Fair Schedulers for Cognitive Radios |
| 指導教授: |
張志文
Chang, Chih-Wen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電腦與通信工程研究所 Institute of Computer & Communication Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 英文 |
| 論文頁數: | 41 |
| 中文關鍵詞: | 無線電資源管理 、公平性 、感知無線電 、干擾溫度 、比例式公平排程 、最大速度導向排程 |
| 外文關鍵詞: | fairness, proportional fair, interference temperature, Cognitive radio, scheduler, max rate |
| 相關次數: | 點閱:91 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近十年來所發展的感知無線電技巧性地使用執照頻帶上之頻譜洞以改善頻譜效益。然而, 相較於傳統蜂窩式系統之不同在於各個頻譜洞上所允許的干擾量皆不盡相同, 亦為無線電資源管理增添了一個新的思考維度。因此在感知無線電系統中, 遠近效應或許並非造成不公平的主因。也就是說, 一個靠近基地台的感知無線電終端可能因為使用了現存干擾量較高的頻譜洞而只能使用較小的傳輸功率; 相對地, 一個距離基地台較遠的感知無線電終端或許可以在現存干擾量較低的頻譜洞上採用較大的傳輸功率。在此一情況下, 遠離基地台之感知無線電終端便可能成了較有利的一方, 非一致的干擾限制便成了另一個造成不公平的變因。所以原本被設計於多使用者間分配無線電資源並解決遠近問題的比例式公平排程器在感知無線電系統中便可能扮演了新的角色。此外, 不同於傳統蜂窩式系統中之最大速度導向排程器, 遠近效應所造成之缺陷似乎不再如此嚴重。因此在感知無線電系統中, 我們結合了最大速度導向及比例式公平排程器, 提出了(PF+MR)演算法以加強頻譜使用效率並公平地分配資源給各個感知無線電使用者。
透過模擬結果, 我們發現在我們假設的環境下, 針對不同數量的線上使用者, (PF+MR) 排程器能在維持高公平性下達到相較比例式排程器提高系統的上載數據傳輸率至多達10% 。
我們相信這份論文能在感知無線電系統之排程器設計領域上開啟
新的一頁。
In this decade, cognitive radio (CR) has been proposed to improve the spectrum efficiency by skillfully utilizing the spectrum holes in the license band. However, different from the conventional cellular systems, the allowable interference constraint associated with each spectrum hole adds a new dimension in the radio resource management (RRM). Consequently, the near-far effects may not be the major reason accounted for the possible unfairness in a CR system. That is a CR terminal near the BS may only allow a fewer amount of transmission power using a spectrum hole with a higher interference level, while another far CR terminal may be able to pour transmission power in a spectrum hole with a lower interference level. In this situation, the far CR terminal may benefit and the non-uniform interference constraints become another factor causing the unfairness. As a result, the conventional proportional-fair (PF) scheduler, mainly designed to solve the near-far problem, may now play a new role in the CR systems. Moreover, the major flaw of the max-rate (MR) scheduler resulted from the near-far problem may not be that serious as in the conventional systems. Thus, to take both advantages of the PF and MR schedulers, we combine these two schedulers (PF+MR) to boost the spectrum efficiency and achieve a fair play in the CR systems. Via simulation results, we find that the combining (PF+MR) scheduler can not only attain a 10% improvement at most in terms of uplink capacity but also maintain almost the same fairness performance as the pure PF scheduler. We believe that this thesis opens a new research area of designing the schedulers for the CR systems.
[1] Qi Qu, Laurence B. Milstein, and Dhadesugoor R. Vaman, “Cognitive Radio Based Multi-User Resource Allocation in Mobile Ad Hoc Networks using Multi-Carrier CDMA Modulation,” IEEE Journal on Selected Areas in Communications, vol. 26, p. 70, 2008.
[2] Federal Communications Commission, “Establishment of an Interference Temperature Metric to Quantify and Manage Interference and to Expand Available Unlicensed Operation in Certain Fixed, Mobile and Satellite Frequency Bands,” ET Docket 03-289, Notice of Inquiry and Notice of Proposed Rulemaking, November 2003.
[3] T. Charles Clancy, Formalizing the Interference Temperature Model,” Wiley Journal on Wireless Communications and Mobile Computing, vol. 7, pp. 1077–1086, May 2007.
[4] Wei Wang, Tao Peng, and Wenbo Wang, “Optimal Power Control Under Interference Temperature Constraints in Cognitive Radio Network,” IEEE Wireless Communications and Networking Conference, pp. 116–120, March 2007.
[5] Atia George, Ermis Erhan, and Saligrama Venkatesh, ”Robust Energy Efficient Cooperative Spectrum Sensing in Cognitive Radios,” IEEE Workshop on Statistical Signal Processing, pp. 502–506, August 2007.
[6] Xuemin Hong, Cheng-Xiang Wang, Hsiao-Hwa Chen, and John Thompson, “Performance Analysis of Cognitive Radio Networks with Average Interference Power Constraints,” IEEE International Conference on Communications, pp. 3578–3582, May 2008.
[7] Joseph Mitola III and Gerald Q. Maguire, Jr., “Cognitive Radio: Making Software Radios More Personal,” IEEE Personal Communications, vol. 6, p. 13, 1999.
[8] Simon Haykin, “Cognitive Radio: Brain-Empowered Wireless Communications,” IEEE Journal on Selected Areas in Communications, vol. 23, p. 201, 2005.
[9] Qing Zhao and Brian M. Sadler, “A Survey of Dynamic Spectrum Access: Signal Processing and Networking Perspectives,” ICASSP, vol. 4, pp. 15–20, Apr. 2007.
[10] Gengfa Fang, Yi Sun, Jihua Zhou, Jinglin Shi, Zhongcheng Li, and Dutkiewicz E, “Subcarrier Allocation for OFDMA Wireless Channels Using Lagrangian Relaxation Methods,” IEEE Global Telecommunications Conference, November 2006.
[11] Long Gao and Shuguang Cui, “A Low-complexity Adaptive Subcarrier, Bit, and Power Allocation Algorithm for OFDMA Systems,” IEEE Global Telecommunications Conference, December 2006.
[12] Guanding Yu, Zhaoyang Zhang, Yan Chen, and Peiliang Qiu, “An Efficient Resource Allocation Algorithm for OFDMA Systems with Multiple Services,” IEEE Global Telecommunications Conference, December 2006.
[13] Laurent Cariou, Jean-Francois Helard, and Jean-Yves Baudais, “Theoretical and Simulation Results with Uplink OFDMCode Division Multiplexing in Multicellular Scenario,” IEEE Global Telecommunications Conference, December 2006.
[14] Rajendre K. Jain, Dah-Ming W. Chiu, and William R. Hawe, “A Quantitative Measure Of Fairness And Discrimination For Resource Allocation In Shared Computer Systems,” in DEC Research Report TR-301, 1984.
[15] Qinghai Xiao, Qunyi Gao, Yunzhou Li, Shidong Zhou, and Jing Wang, “A Novel Power Control Approach Based on ε-Greedy Monte Carlo Method in Cognitive Radio System,” International Conference on Cognitive Radio Oriented Wireless Networks and Communications, pp. 1–6, 2008.
[16] A. Jalali, R. Padovani, and R. Pankaj, “Data Throughput of CDMA-HDR a High Efficiency-High Data Rate Personal Communication Wireress System,” IEEE Vehicular Technology Conference, vol. 3, pp. 1854–1858, 2000.
[17] Jeffrey G. Andrews, Arunabha Ghosh, and Rias Muhamed, Fundamentals of WiMAX. Prentice Hall, 2007.
[18] Yueling Che, Jie Chen, Wanbin Tang, and Shaoqian Li, “A Two-Step Channel and Power Allocation Scheme in Centralized Cognitive Networks Based on Fairness,” IEEE Vehicular Technology Conference, pp. 1589–1593, 2008.