| 研究生: |
李奕漢 Li, Yi-Han |
|---|---|
| 論文名稱: |
研究第九號纖維母細胞生長因子在雄性性腺發育所扮演的角色 Study the role of FGF9 in male sex determination |
| 指導教授: |
孫孝芳
Sun, H. Sunny |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
醫學院 - 基礎醫學研究所 Institute of Basic Medical Sciences |
| 論文出版年: | 2017 |
| 畢業學年度: | 106 |
| 語文別: | 英文 |
| 論文頁數: | 73 |
| 中文關鍵詞: | 第九號纖維母細胞生長因子 、雄性性別決定 、雌性性別反轉 、SRY基因轉錄調控 、胚胎發育 |
| 外文關鍵詞: | FGF9, male sex determination, female-to-male sex-reversal, SRY transcription regulation, embryonic development |
| 相關次數: | 點閱:104 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
FGF9是一種自分泌/旁泌性生長因子並且在胚胎和器官發育,性別決定及許多生理過程中扮演了十分重要的角色。FGF9/Fgf9表達在SRY/Sry性別決定基因表達之後快速上升,Fgf9基因敲除小鼠出現雄性性別反轉的現象,此外FGF9異常表達也與人類性發育障礙有關聯。然而,FGF9基因是否具有性別決定功能,以及在男性睾丸發育過程中FGF9/Fgf9的表達調控機制尚待闡明。在這項研究中,我們假設在男性睾丸發育過程中,FGF9/Fgf9是受到轉錄因子SRY/Sry所調控,且高度表達的FGF9是足以觸發雌性性別反轉。我們利用體外培養試驗發現,在XX性腺中,外源性FGF9的確可以轉變細胞特性從雌性變為雄性以及誘導出類睾丸結構。接著為了研究SRY/Sry調控FGF9/Fgf9表達機制,我們先利用生物資訊分析發現在人類及小鼠FGF9/Fgf9啟動子區域都找到了一些SRY/Sry結合位點。之後利用報導基因實驗證明老鼠的Sry和Sf1共同促進Fgf9的的啟動子活性。更進一步,我們找出人類SRY基因直接透過FGF9 -833/-821啟動子區域來增加FGF9啟動子活性和表現。綜合以上結果,我們的研究指出FGF9具有作為性別決定基因功能的能力以及SRY/Sry會直接透過轉錄調控來控制FGF9/Fgf9的表現。
Fibroblast growth factor 9 (FGF9) is an autocrine/paracrine growth factor that plays critical roles in embryonic and organic development, sexual determination, and various physiological processes. FGF9/Fgf9 is expressed soon after sex-determining region Y (SRY/Sry) expression during male sex determination and Fgf9 knockout mice exhibit male-to-female sex reversal. Aberrant expression of FGF9 correlates with human disorders of sex development (DSDs). However, whether FGF9 is sufficient to trigger male sex development on its own, and how FGF9/Fgf9 is controlled during early embryonic development not completely understood. In this study, we hypothesize that the expression of FGF9 is sufficient to trigger male sex development and FGF9/Fgf9 expression is regulated by SRY/Sry during testes development. We applied the ex vivo 3D culture model and found that exogenous FGF9 switches cells from female-to-male and induces testis cord like structure in XX gonads. To study the SRY/Sry regulation on FGF9/Fgf9 expression, we found several putative SRY/Sry binding elements by using bioinformatics analysis, located in the FGF9/Fgf9 promoter region of both humans and mice. Reporter gene assays show that mouse Sry and Sf1 cooperatively increase Fgf9 promoter activity at the -1150/-998 position. Moreover, we found that human SRY directly interacts with the FGF9 -833/-821 promoter region and upregulates promoter activity and expression. Taken together, our study shows, for the first time, that FGF9 is sufficient to trigger male sex determination and the expression of FGF9/Fgf9 is directly controlled by SRY/Sry through transcriptional activation.
1. Luo, X.R., Y.Y. Ikeda, and K.L. Parker, A Cell-Specific Nuclear Receptor Is Essential for Adrenal and Gonadal Development and Sexual-Differentiation. Cell, 1994. 77(4): p. 481-490.
2. Molyneaux, K.A., et al., Time-lapse analysis of living mouse germ cell migration. Developmental Biology, 2001. 240(2): p. 488-98.
3. Piprek, R.P., Molecular and cellular machinery of gonadal differentiation in mammals. The International Journal of Developmental Biology, 2010. 54(5): p. 779-86.
4. Vainio, S., et al., Female development in mammals is regulated by Wnt-4 signalling. Nature, 1999. 397(6718): p. 405-409.
5. Koopman, P., The Curious World of Gonadal Development in Mammals. Current Topics in Developmental Biology, 2016. 116: p. 537-45.
6. Feng, C.W., J. Bowles, and P. Koopman, Control of mammalian germ cell entry into meiosis. Molecular and Cellular Endocrinology, 2014. 382(1): p. 488-97.
7. Coveney, D., et al., Four-dimensional analysis of vascularization during primary development of an organ, the gonad. Proceedings of the National Academy of Science of the United States of America, 2008. 105(20): p. 7212-7.
8. Hanley, N.A., et al., SRY, SOX9, and DAX1 expression patterns during human sex determination and gonadal development. Mechanisms of Development, 2000. 91(1-2): p. 403-7.
9. Combes, A.N., et al., Endothelial cell migration directs testis cord formation. Developmental Biology, 2009. 326(1): p. 112-20.
10. Gubbay, J., et al., A gene mapping to the sex-determining region of the mouse Y chromosome is a member of a novel family of embryonically expressed genes. Nature, 1990. 346(6281): p. 245-50.
11. Koopman, P., et al., Male development of chromosomally female mice transgenic for Sry. Nature, 1991. 351(6322): p. 117-21.
12. Albrecht, K.H. and E.M. Eicher, Evidence that Sry is expressed in pre-Sertoli cells and Sertoli and granulosa cells have a common precursor. Developmental Biology, 2001. 240(1): p. 92-107.
13. Bullejos, M. and P. Koopman, Spatially dynamic expression of Sry in mouse genital ridges. Developmental Dynamics, 2001. 221(2): p. 201-5.
14. Kashimada, K. and P. Koopman, Sry: the master switch in mammalian sex determination. Development, 2010. 137(23): p. 3921-30.
15. Koopman, P., et al., Expression of a candidate sex-determining gene during mouse testis differentiation. Nature, 1990. 348(6300): p. 450-2.
16. Sekido, R. and R. Lovell-Badge, Sex determination involves synergistic action of SRY and SF1 on a specific Sox9 enhancer. Nature, 2008. 453(7197): p. 930-4.
17. Kamachi, Y. and H. Kondoh, Sox proteins: regulators of cell fate specification and differentiation. Development, 2013. 140(20): p. 4129-44.
18. Li, Y., M. Zheng, and Y.F. Lau, The sex-determining factors SRY and SOX9 regulate similar target genes and promote testis cord formation during testicular differentiation. Cell Reports, 2014. 8(3): p. 723-33.
19. Bishop, C.E., et al., A transgenic insertion upstream of sox9 is associated with dominant XX sex reversal in the mouse. Nature Genetics, 2000. 26(4): p. 490-4.
20. Vidal, V.P., et al., Sox9 induces testis development in XX transgenic mice. Nature Genetics, 2001. 28(3): p. 216-7.
21. Kidokoro, T., et al., Influence on spatiotemporal patterns of a male-specific Sox9 activation by ectopic Sry expression during early phases of testis differentiation in mice. Developmental Biology, 2005. 278(2): p. 511-25.
22. Wilhelm, D., et al., Sertoli cell differentiation is induced both cell-autonomously and through prostaglandin signaling during mammalian sex determination. Developmental Biology, 2005. 287(1): p. 111-24.
23. Kim, Y., et al., Fgf9 and Wnt4 act as antagonistic signals to regulate mammalian sex determination. PLoS Biology, 2006. 4(6): p. e187.
24. Weksler, N.B., et al., Differential effects of fibroblast growth factor (FGF) 9 and FGF2 on proliferation, differentiation and terminal differentiation of chondrocytic cells in vitro. Biochemical Journal, 1999. 342 Pt 3: p. 677-82.
25. Willerton, L., et al., Effects of FGF9 on embryonic Sertoli cell proliferation and testicular cord formation in the mouse. The International Journal of Developmental Biology, 2004. 48(7): p. 637-43.
26. Goldfarb, M., Functions of fibroblast growth factors in vertebrate development. Cytokine Growth Factor Review, 1996. 7(4): p. 311-25.
27. Jameson, S.A., Y.T. Lin, and B. Capel, Testis development requires the repression of Wnt4 by Fgf signaling. Developmental Biology, 2012. 370(1): p. 24-32.
28. Colvin, J.S., et al., Male-to-female sex reversal in mice lacking fibroblast growth factor 9. Cell, 2001. 104(6): p. 875-89.
29. Schmahl, J., et al., Fgf9 induces proliferation and nuclear localization of FGFR2 in Sertoli precursors during male sex determination. Development, 2004. 131(15): p. 3627-36.
30. Bowles, J., et al., Retinoid signaling determines germ cell fate in mice. Science, 2006. 312(5773): p. 596-600.
31. DiNapoli, L., J. Batchvarov, and B. Capel, FGF9 promotes survival of germ cells in the fetal testis. Development, 2006. 133(8): p. 1519-27.
32. Bowles, J., et al., FGF9 suppresses meiosis and promotes male germ cell fate in mice. Developmental Cell, 2010. 19(3): p. 440-9.
33. Lin, Y.M., et al., Fibroblast growth factor 9 stimulates steroidogenesis in postnatal Leydig cells. International Journal of Andrology, 2010. 33(3): p. 545-53.
34. Lee, P.A., et al., Consensus statement on management of intersex disorders. International Consensus Conference on Intersex. Pediatrics, 2006. 118(2): p. e488-500.
35. Knarston, I., K. Ayers, and A. Sinclair, Molecular mechanisms associated with 46,XX disorders of sex development. Clinical Science, 2016. 130(6): p. 421-32.
36. Bashamboo, A. and K. McElreavey, Human sex-determination and disorders of sex-development (DSD). Seminars in Cell and Developmental Biology, 2015. 45: p. 77-83.
37. Huang, B., et al., Autosomal XX sex reversal caused by duplication of SOX9. American Journal of Medical Genetics, 1999. 87(4): p. 349-53.
38. Vetro, A., et al., Testis development in the absence of SRY: chromosomal rearrangements at SOX9 and SOX3. European Journal of Human Genetics, 2015. 23(8): p. 1025-32.
39. Chen, T.M., et al., Microsatellite in the 3' untranslated region of human fibroblast growth factor 9 (FGF9) gene exhibits pleiotropic effect on modulating FGF9 protein expression. Human Mutation, 2007. 28(1): p. 98.
40. Chung, C.L., et al., Association of aberrant expression of sex-determining gene fibroblast growth factor 9 with Sertoli cell-only syndrome. Fertility and Sterility, 2013. 100(6): p. 1547-54 e1-4.
41. Chiang, H.S., et al., Cytogenic and molecular analyses of 46,XX male syndrome with clinical comparison to other groups with testicular azoospermia of genetic origin. Journal of the Formosan Medical Association, 2013. 112(2): p. 72-8.
42. Hiramatsu, R., et al., Regionally distinct potencies of mouse XY genital ridge to initiate testis differentiation dependent on anteroposterior axis. Developmental Dynamics, 2003. 228(2): p. 247-53.
43. Hiramatsu, R., et al., FGF signaling directs a center-to-pole expansion of tubulogenesis in mouse testis differentiation. Development, 2010. 137(2): p. 303-12.
44. Hacker, A., et al., Expression of Sry, the mouse sex determining gene. Development, 1995. 121(6): p. 1603-14.
45. Yen, W.H., et al., Sp1-mediated ectopic expression of T-cell lymphoma invasion and metastasis 2 in hepatocellular carcinoma. Cancer Medicine, 2016. 5(3): p. 465-77.
46. Chen, T.M., et al., Overexpression of FGF9 in colon cancer cells is mediated by hypoxia-induced translational activation. Nucleic Acids Research, 2014. 42(5): p. 2932-44.
47. Sekido, R., SRY: A transcriptional activator of mammalian testis determination. The International Journal of Biochemistry & Cell Biology, 2010. 42(3): p. 417-20.
48. Sim, H., A. Argentaro, and V.R. Harley, Boys, girls and shuttling of SRY and SOX9. Trends in Endocrinology and Metabolism, 2008. 19(6): p. 213-22.
49. Munger, S.C. and B. Capel, Sex and the circuitry: progress toward a systems-level understanding of vertebrate sex determination. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2012. 4(4): p. 401-12.
50. Gustin, S.E., et al., FGF9, activin and TGFbeta promote testicular characteristics in an XX gonad organ culture model. Reproduction, 2016. 152(5): p. 529-43.
51. Hiramatsu, R., et al., A critical time window of Sry action in gonadal sex determination in mice. Development, 2009. 136(1): p. 129-38.
52. Sutton, E., et al., Identification of SOX3 as an XX male sex reversal gene in mice and humans. The Journal of Clinical Investigation, 2011. 121(1): p. 328-41.
53. Polanco, J.C., et al., Sox10 gain-of-function causes XX sex reversal in mice: implications for human 22q-linked disorders of sex development. Human Molecular Genetics, 2010. 19(3): p. 506-16.
54. Gregoire, E.P., et al., Transient development of ovotestes in XX Sox9 transgenic mice. Developmental Biology, 2011. 349(1): p. 65-77.
55. Jameson, S.A., et al., Temporal transcriptional profiling of somatic and germ cells reveals biased lineage priming of sexual fate in the fetal mouse gonad. PLoS Genetics, 2012. 8(3): p. e1002575.
56. Bowles, J., et al., Sry requires a CAG repeat domain for male sex determination in Mus musculus. Nature Genetics, 1999. 22(4): p. 405-8.
57. Zhao, L., et al., Reduced Activity of SRY and its Target Enhancer Sox9-TESCO in a Mouse Species with X*Y Sex Reversal. Scientific Reports, 2017. 7: p. 41378.
58. Lovell-Badge, R., C. Canning, and R. Sekido, Sex-determining genes in mice: building pathways. Novartis Foundation Symposia, 2002. 244: p. 4-18; discussion 18-22, 35-42, 253-7.
59. Pannetier, M., et al., Goat SRY induces testis development in XX transgenic mice. Federation of European Biochemical Societies Letters, 2006. 580(15): p. 3715-20.
60. Zhao, L. and P. Koopman, SRY protein function in sex determination: thinking outside the box. Chromosome Research, 2012. 20(1): p. 153-62.
61. Wu, J.B., et al., Regulation of monoamine oxidase A by the SRY gene on the Y chromosome. Federation of American Societies for Experimental Biology, 2009. 23(11): p. 4029-38.
62. Xu, Z., et al., Synergistic effect of SRY and its direct target, WDR5, on Sox9 expression. PLoS One, 2012. 7(4): p. e34327.
63. White, S., et al., Copy number variation in patients with disorders of sex development due to 46,XY gonadal dysgenesis. PLoS One, 2011. 6(3): p. e17793.
64. Murakami, S., et al., The male-specific factor Sry harbors an oncogenic function. Oncogene, 2014. 33(23): p. 2978-86.
65. Xue, T.C., et al., Sex-determination gene SRY potentially associates with poor prognosis but not sex bias in hepatocellular carcinoma. Digestive Diseases and Sciences, 2015. 60(2): p. 427-35.
66. Murakami, S., et al., SRY and OCT4 Are Required for the Acquisition of Cancer Stem Cell-Like Properties and Are Potential Differentiation Therapy Targets. Stem Cells, 2015. 33(9): p. 2652-63.
67. Wang, S., et al., Expression and purification of an FGF9 fusion protein in E. coli, and the effects of the FGF9 subfamily on human hepatocellular carcinoma cell proliferation and migration. Applied Microbiology and Biotechnology, 2017.
68. Yang, H., et al., MicroRNA-140-5p suppresses tumor growth and metastasis by targeting transforming growth factor beta receptor 1 and fibroblast growth factor 9 in hepatocellular carcinoma. Hepatology, 2013. 58(1): p. 205-17.