簡易檢索 / 詳目顯示

研究生: 練宜旻
Lien, Yi-Ming
論文名稱: 相異冪集合問題在圖論上之應用
Application of Subset Sum Distinct Problem on Graph Theory
指導教授: 黃柏嶧
Huang, Po-Yi
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系應用數學碩博士班
Department of Mathematics
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 28
中文關鍵詞: 相異冪集合完全圖星星棋盤
外文關鍵詞: subset-sum-distinct, P. Erdos, complete graphs, stars, grids
相關次數: 點閱:131下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在組合數論的領域中,P. Erdos曾經提出了相異冪集合的問題。而知名的 Atkinson和 Conway等數學家也各自提出了能產生相異冪集合的數列作為近似最佳解。因此,我們從圖論上著手。在本篇中我們透過一些特別類型的圖去逼近相異冪集合問題的最佳解。

    P. Erdos asked a problem about the subset-sum-distinct sets. Atkinson-Negro-Santoro sequence and Conway-Guy sequence are known best solutions for problem. We treat this problem in graphs. Precisely, we consider weighted graphs such as paths, cycles, stars, and grids in order to approach the best solution.

    Contents 1 Introduction 3 2 Subset Sum Distinct 4 2.1 Atkinson-Negro-Santoro sequence 6 2.2 Conway-Guy sequence 7 3 Sum Distinct Property on Graphs 11 4 Paths and Cycles 14 5 Stars 19 6 Grids 25 Reference 27

    [1] Tom Bohman. A sum packing problem of Erdös and the Conway-Guy sequence. Proc.
    Amer. Math. Soc., (124, 3627-3636), 1996.

    [2] Steven R. Finch. Mathematical Constants, volume 1. Cambridge, 2003.

    [3] The OEIS Foundation. The on-line encyclopedia of integer sequences, http://oeis.org/
    2013.

    [4] Alexander Rosa. Theory and Practice of Combinatorics, volume 12. North Holland,
    1982.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE