簡易檢索 / 詳目顯示

研究生: 李雅婷
Lee, Ya-ting
論文名稱: 利用主成份法判別晶片品質
Using Principal Components to Assess the Chip Quality for cDNA Microarray Data
指導教授: 詹世煌
Chan, Shih-Huang
學位類別: 碩士
Master
系所名稱: 管理學院 - 統計學系
Department of Statistics
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 43
中文關鍵詞: 微陣列主成份法品質評估指標晶片品質管制
外文關鍵詞: microarray, array quality, principal component, quality index
相關次數: 點閱:170下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在分析cDNA微陣列資料前,晶片需有嚴格的品質管制,以提高分析結果的可信度。然而文獻上缺乏客觀衡量晶片品質良窳的指標,且目前使用的影像處理軟體,如GenePix Pro,所得到的品質輸出變數繁多,在應用上不周延且頗為不便,基於此,本文利用因素分析中的主成份法來簡化這些變數,結合成少數幾個品質評估指標,並據此評估晶片的品質。透過統計模擬,所建立的三個指標可以有效地區辨晶片點品質。由實際資料的分析,發現所建議的Factor 1指標和GenePix Pro中的Flags指標性質類似,而指標Factor 2和Factor 3則可補足Flags指標在背景光部份訊息的欠缺,因而更具有偵測晶片品質的功效。

    For the sake of improving the reliability of downstream analysis in microarray, monitoring array quality is necessary and essential. However, current accessible image scanner, like GenePix Pro, fails to offer objective and effective quality indexes to assess array quality. In this thesis, factor analysis was conducted to extract information contained in the feature quality measures. It turns out that three solid factors, which we called quality indexes, appear if principal component method, among others, is applied. Simulation study shows that these three quality indexes could assess the array quality efficiently. Through real data analysis, the Factor 1 index we extracted is similar to the Flags variable in GenePix Pro software. Factor 1 index, therefore, can be a substitute for the Flags variable. As to indexes Factor 2 and Factor 3, they supply information about the background, which is not available from the Flags variable.

    圖目錄 II 表目錄 III 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機與目的 1 第二章 晶片品質評估方法 3 2.1 微陣列技術簡介 3 2.2 文獻回顧 3 2.3 利用GENEPIX PRO之品質輸出變數建立品質評估指標 6 2.4 品質指標的建立及診斷 11 第三章 統計模擬 14 3.1 資料的生成與模擬設定 14 3.2 模擬結果的評估 18 3.3 模擬結果的探討 22 第四章 實際資料分析 27 第五章 結論 40 參考文獻 42 附錄A 43

    Jones, L., Goldstein, D. R. et al. (2006). Assessment of the relationship between pre-chip and post-chip quality measures for Affymetrix GeneChip expression data. BMC Bioinformatics, 7:211.

    Rocke, D. M. and Durbin, B. (2001). A model for measurement error for gene expression arrays. Journal of Computational Biology, 8, 6, 557-569.

    Dumur, D. I., Nasim, S., Best, A. M., Archer, K. J. Ladd, A. C., Mas, V. R., Wilkinson, D. S., Garrett, C. T., and Ferreira-Gonzalez, A. (2004). Evaluation of quality-control criteria for Microarray gene expression analysis. Clin Chem, 50:11, 1994-2002.

    Petri, A., Fleckner, J., and Matthiessen, M. W. (2004). Array-A-Lizer: A serial DNA microarray quality analyzer. BMC Bioinformatics, 5:12.

    Finkelstein, D., Ewing, R., Gollub, J., Sterky, F., Cherry, M., and Somerville, S. (2002). Microarray data quality analysis: lessons from the AFGC project. Plant Molecular Biology, 48, 119-131.

    下載圖示
    2010-07-02公開
    QR CODE