簡易檢索 / 詳目顯示

研究生: 吳靜涵
Wu, Ching-Han
論文名稱: 多孔性石墨烯薄膜之製作和室溫氨氣及有機氣體感測
Preparation of porous graphene films for room temperature detection of NH3 and organic vapors
指導教授: 劉全璞
Liu, Chuan-Pu
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 108
中文關鍵詞: 多孔性石墨烯奈米碳管/石墨烯複合材氣體感測有機性氣體
外文關鍵詞: porous graphene, gas sensing, organic vapors
相關次數: 點閱:54下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,我們利用鎳作為金屬觸媒以金屬附生法成長出多孔性石墨烯,另外亦以氣相沉積法成長之單層石墨烯作為氣體感測材料,進行氨氣以及數種有機氣體於ppm濃度等級之氣體感測。為了能夠有效達到氣體感測選擇性,我們更將多孔性石墨烯改質為氮摻雜之多孔性石墨烯以及多孔性石墨烯/多壁奈米碳管複合材料。在多孔性石墨烯的合成中,我們發現多孔性石墨烯的孔洞大小和成長時間有關係,成長時間少於10分鐘,其孔洞大小小於100奈米;而成長時間長於10分鐘,則可獲得1微米之孔洞結構。另外,所合成出的多孔性石墨烯薄膜屬於兩層至五層的多層石墨烯。而多孔性石墨烯改質的部分,我們成功地利用多孔性石墨烯缺陷邊緣誘發成長出多壁奈米碳管,其無須金屬觸媒進行催化反應,此外,透過30分鐘的氨氣熱處理,我們易成功的合成出氮摻雜多孔性石墨烯薄膜。最後,我們將上述不同石墨烯材料作為氣體感測元件進行無機以及有機氣體分子感測,發現單層石墨烯元件表現出最佳的氣體響應,其次為具有大孔洞之多層石墨烯元件,最後則為小孔洞之多層石墨烯元件。另外,有機性的氣體氣體響應比無機性的氣體響應來的高。另一方面,多壁奈米碳管/多孔性石墨烯複合材料之乙醇和異丙醇氣體響應較未改質石墨烯薄膜高,這是由於多壁奈米碳管/多孔性石墨烯複合材有更多的懸浮鍵結,而這些懸浮鍵結屬於更具反應力的吸附位置,因此能夠反應出更高的氣體響應;然而在丙酮氣體的量測,多壁奈米碳管/多孔性石墨烯複合材其氣體響應卻不增反降,這是由於丙酮分子感測機制和前兩者大不相同。氮摻雜石墨烯薄膜元件部分其氣體感測響應皆下降,這是因為氮摻雜量尚未達到將石墨烯轉換成n-type的量,反而使得石墨烯薄膜內部載子濃度下降。最後,我們提出不同於以往氣體選擇性的判斷,利用比較不同孔洞結構之石墨烯薄膜的氣體響應來達到氣體選擇性的偵測,因此我們相信其未來在電子鼻子(electronic nose)應用大有潛力。

    Porous graphene films with tunable pore sizes and porosity are first demonstrated to be synthesized by solid state reactions with Ni catalytic thin films. These films together with single layer graphene (SLG) fabricated by chemical vapor deposition are compared in sensing behavior for NH3 and various organic vapors in ppm levels. All the gas sensing measurements involving adsorption/desorption behaviors of gases are carried out based on the change in electrical conductivity with different exposure times in different concentrations at room temperature. Raman spectroscopy, used to monitor the quality of the pristine graphene films, reveals the porous graphene to be mostly bilayer to five layer graphene. In general, the pore size of porous graphene decreases as decreasing the reaction time. Specifically, if the reaction time is less than 3 minutes, the distribution of pore size falls mainly in 10~100 nm, which increases to 1.2~1.6 um if the time prolongs to 10 minutes. For different vapor tested, the sensitivity of all types of graphene follows different order. Nevertheless, the sensitivity of the porous graphene with lager holes is higher than that with small pores for all types of gases, and the sensitivity of organic vapors is higher than inorganic vapors. Finally, we can compare all kinds of sensing devices to achieve the gas selectivity.

    目錄 中文摘要 Ⅰ 英文延伸摘要 Ⅱ 致謝 Ⅶ 目錄 Ⅷ 表目錄 Ⅹ 圖目錄 ⅩⅠ 第一章 緒論 1 1-1 石墨烯的發展歷史 1 1-2 石墨烯的介紹 1 1-3 研究動機 4 第二章 文獻回顧 5 2-1 多孔性石墨烯合成方式 5 2-1-1 有機交聯鍵結 5 2-1-2 電漿/電子束/光子束蝕刻 7 2-1-3 模板附生 11 2-1-4 化學溶液蝕刻 12 2-2 氣體感測概論 17 2-2-1 金屬氧化物半導體材料應用於氣體感測 18 2-2-2 高分子應用於氣體感測 20 2-2-3 碳材料應用於氣體感測 22 2-3 石墨烯應用於氣體感測 26 2-3-1 石墨烯氣體感測機制 27 2-3-2 石墨烯應用於氣體感測 28 2-3-3 具缺陷石墨烯和官能基改質石墨烯應用於氣體感測 33 2-3-4 石墨烯複合材應用於氣體感測 38 2-3-5 發展瓶頸 40 第三章 實驗設備與步驟 3-1 實驗設備 43 3-1-1 精密離子蝕刻鍍膜系統 (Precision Etching Coating System, PECS) 43 3-1-2 真空退火爐系統 43 3-1-3 化學氣相沉積系統(Chemical Vapor Deposition, CVD) 44 3-1-4 氣體感測系統 45 3-1-5 微拉曼光譜儀(Micro-Raman) 46 3-1-6 高解析掃描式電子顯微鏡(High Resolution Scanning Electron Microscope, HR-SEM) 47 3-1-7 穿透式電子顯微鏡 (Transmission Electron Microscopy,TEM) 48 3-1-8 電性量測機台 48 3-2 實驗步驟 49 3-2-1 試片製備 49 3-2-2 熱退火處理 50 3-2-3石墨烯轉移 52 3-2-4 氮摻雜改質 53 3-2-5 成長奈米碳管改質 53 3-2-6 氣體感測 54 第四章 實驗結果與討論 55 4-1熱退火成長多孔性石墨烯 55 4-1-1成長多孔性石墨烯 55 4-1-2不同鎳金屬厚度及熱退火時間參數比較 57 4-1-3 多孔性石墨烯成長機制探討 69 4-2 多孔性石墨烯改質處理 72 4-2-1氮摻雜處理 72 4-2-2 奈米碳管成長處理 75 4-2-3 奈米碳管成長機制探討 79 4-3 氣體感測量測 81 4-3-1 未改質多孔性石墨烯氣體感測 81 4-3-2 未改質之多孔性石墨烯氣體感測機制討論 93 4-3-3 奈米碳管/多孔性石墨烯複合材氣體感測 96 4-3-4 氮摻雜處理多孔性石墨烯氣體感測 99 第五章 結論 100 第六章 參考文獻 101

    [1] A. K. Geim and K. S. Novoselov, "The rise of graphene," Nature Materials, vol. 6, pp. 183-191, 2007.
    [2] J. H. Chen, C. Jang, S. Xiao, M. Ishigami, and M. S. Fuhrer, "Intrinsic and extrinsic performance limits of graphene devices on SiO2," Nature Nanotechnology, vol. 3, pp. 206-209, 2008.
    [3] Y. M. Lin, A. Valdes-Garcia, S. J. Han, D. B. Farmer, I. Meric, Y. Sun, Y. Wu, C. Dimitrakopoulos, A. Grill, P. Avouris, and K. A. Jenkins, "Wafer-scale graphene integrated circuit," Science, vol. 332, pp. 1294-1297, 2011.
    [4] X. Wang, L. J. Zhi, and K. Mullen, "Transparent, conductive graphene electrodes for dye-sensitized solar cells," Nano Letters, vol. 8, pp. 323-327, 2008.
    [5] F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, and K. S. Novoselov, "Detection of individual gas molecules adsorbed on graphene," Nat Mater, vol. 6, pp. 652-5, 2007.
    [6] S. Some, Y. Xu, Y. Kim, Y. Yoon, H. Qin, A. Kulkarni, T. Kim, and H. Lee, "Highly sensitive and selective gas sensor using hydrophilic and hydrophobic graphenes," Scientific Reports, vol. 3, p. 1868, 2013.
    [7] N. Mohanty and V. Berry, "Graphene-based single-bacterium resolution biodevice and DNA transistor: Interfacing Graphene Derivatives with Nanoscale and Microscale Biocomponents," Nano Letters, vol. 8, pp. 4469-4476, 2008.
    [8] V. Barone, O. Hod, and G. E. Scuseria, "Electronic Structure and Stability of Semiconducting Graphene Nanoribbons," Nano Letters, vol. 6, pp. 2748-2754, 2006.
    [9] H. Yan, Y. Tang, W. Long, and Y. Li, "Enhanced thermal conductivity in polymer composites with aligned graphene nanosheets," Journal of Materials Science, vol. 49, pp. 5256-5264, 2014.
    [10] D. Zhang, L. Gan, Y. Cao, Q. Wang, L. Qi, and X. Guo, "Understanding charge transfer at PbS-decorated graphene surfaces toward a tunable photosensor," Advanced Materials, vol. 24, pp. 2715-2720, 2012.
    [11] Y. Chen, Y. Long, Y. Liu, L. Shen, Y. Zhang, Q. Deng, Z. Zheng, W. Yu, and S. Ruan, "Optimizing the light absorption of graphene-based organic solar cells by tailoring the weak microcavity with dielectric/graphene/dielectric multilayer," Applied Physics Letters, vol. 103, p. 063301, 2013.
    [12] O. Vagas, A. l. Caballero, J. n. Morales, Giuseppe Antonio Elia, B. Scrosatiwb, and J. Hassoun, "Electrochemical performance of a graphene nanosheets anode in a high voltage lithium-ion cell," Physical Chemistry Chemical Physics, vol. 15, p. 20444, 2013.
    [13] X. Yang, F. Zhang, L. Zhang, T. Zhang, Y. Huang, and Y. Chen, "A High-Performance Graphene Oxide-Doped Ion Gel as Gel Polymer Electrolyte for All-Solid-State Supercapacitor Applications," Advanced Functional Materials, vol. 23, pp. 3353-3360, 2013.
    [14] A. S. Wajid, S. Das, F. Irin, H. S. T. Ahmed, J. L. Shelburne, D. Parviz, R. J. Fullerton, A. F. Jankowski, R. C. Hedden, and M. J. Green, "Polymer-stabilized graphene dispersions at high concentrations in organic solvents for composite production," Carbon, vol. 50, pp. 526-534, 2012.
    [15] Q. H. Liang, X. X. Yao, W. W. Liu, Y. Liu, and C. P. Wong, "A Three-Dimensional Vertically Aligned Functionalized Multilayer Graphene Architecture: An Approach for Graphene-Based Thermal Interfacial Materials," ACS Nano, vol. 5, pp. 2392-2401, 2011.
    [16] H. M. Wang, Z. Zheng, Y. Y. Wang, J. J. Qiu, Z. B. Guo, Z. X. Shen, and T. Yu, "Fabrication of graphene nanogap with crystallographically matching edges and its electron emission properties," Applied Physics Letters, vol. 96, p. 023106, 2010.
    [17] I. Yasushi, "Application of Graphene to High-Speed Transistors: Expectations and Challenges," Quarterly Review, vol. 37, 2010.
    [18] J. Cai, P. Ruffieux, R. Jaafar, M. Bieri, T. Braun, S. Blankenburg, M. Muoth, A. P. Seitsonen, M. Saleh, X. Feng, K. Mullen, and R. Fasel, "Atomically precise bottom-up fabrication of graphene nanoribbons," Nature, vol. 466, pp. 470-473, 2010.
    [19] M. Bieri, M. Treier, J. Cai, K. Ait-Mansour, P. Ruffieux, O. Groning, P. Groning, M. Kastler, R. Rieger, X. Feng, K. Mullen, and R. Fasel, "Porous graphenes: two-dimensional polymer synthesis with atomic precision," Chemical Communications, pp. 6919-21, 2009.
    [20] P. Kuhn, A. Forget, D. S. Su, T. Arne, and A. Markus, "From microporous regular frameworks to mesoporous materials with ultrahigh surface area: dynamic reorganization of porous polymer networks," Journal of the American Chemical Society, vol. 130, 2008.
    [21] J. Bai, X. Zhong, S. Jiang, Y. Huang, and X. Duan, "Graphene nanomesh," Nature Nanotechnology, vol. 5, pp. 190-194, 2010.
    [22] X. Liang, Y. S. Jung, S. Wu, A. Ismach, D. L. Olynick, S. Cabrini, and J. Bokor, "Formation of bandgap and subbands in graphene nanomeshes with sub-10 nm ribbon width fabricated via nanoimprint lithography," Nano Lett, vol. 10, pp. 2454-2460, 2010.
    [23] Z. Zeng, X. Huang, Z. Yin, H. Li, Y. Chen, H. Li, Q. Zhang, J. Ma, F. Boey, and H. Zhang, "Fabrication of graphene nanomesh by using an anodic aluminum oxide membrane as a template," Advanced Materials, vol. 24, pp. 4138-42, 2012.
    [24] M. D. Fischbein and M. Drnd, "Electron beam nanosculpting of suspended graphene sheets," Applied Physics Letters, vol. 93, p. 113107, 2008.
    [25] D.-P. Yang, X. Wang, X. Guo, X. Zhi, K. Wang, C. Li, G. Huang, G. Shen, Y. Mei, and D. Cui, "UV/O3generated graphene nanomesh: formation mechanism, properties, and FET studies," The Journal of Physical Chemistry C, vol. 118, pp. 725-731, 2014.
    [26] O. Akhavan, "Graphene nanomesh by ZnO nanorod photocatalysts," ACS Nano, vol. 4, pp. 4174-4180, 2010.
    [27] I. Jung, H. Young Jang, and S. Park, "Direct growth of graphene nanomesh using a Au nano-network as a metal catalyst via chemical vapor deposition," Applied Physics Letters, vol. 103, p. 023105, 2013.
    [28] L. Baraton, Z. B. He, C. S. Lee, C. S. Cojocaru, M. Châtelet, J. L. Maurice, Y. H. Lee, and D. Pribat, "On the mechanisms of precipitation of graphene on nickel thin films," EPL (Europhysics Letters), vol. 96, p. 46003, 2011.
    [29] J. H. Wang and S. Kaskel, "KOH activation of carbon-based materials for energy storage," Journal of Materials Chemistry, vol. 22, p. 23710, 2012.
    [30] Y. Zhu, S. Murali, M. D. Stoller, K. J. Ganesh, W. Cai, P. J. Ferreira, A. Pirkle, R. M. Wallace, K. A. Cychosz, M. Thommes, D. Su, E. A. Stach, and R. S. Ruoff, "Carbon-based supercapacitors produced by activation of graphene," Science, vol. 332, pp. 1537-1541, 2011.
    [31] L. Zhang, F. Zhang, X. Yang, G. Long, Y. Wu, T. Zhang, K. Leng, Y. Huang, Y. Ma, A. Yu, and Y. Chen, "Porous 3D graphene-based bulk materials with exceptional high surface area and excellent conductivity for supercapacitors," Scientific Reports, vol. 3, p. 1408, 2013.
    [32] X. Zhao, C. M. Hayner, M. C. Kung, and H. H. Kung, "Flexible holey graphene paper electrodes with enhanced rate capability for energy storage applications," ACS Nano, vol. 5 pp. 8739-8749, 2011.
    [33] X. Wang, L. Jiao, K. Sheng, C. Li, L. Dai, and G. Shi, "Solution-processable graphene nanomeshes with controlled pore structures," Scientific Reports, vol. 3, p. 1996, 2013.
    [34] Z. Fan, Q. Zhao, T. Li, J. Yan, Y. Ren, J. Feng, and T. Wei, "Easy synthesis of porous graphene nanosheets and their use in supercapacitors," Carbon, vol. 50, pp. 1699-1703, 2012.
    [35] J. Yi, D. H. Lee, W. W. Lee, and W. I. Park, "Direct synthesis of graphene meshes and semipermanent electrical doping," The Journal of Physical Chemistry Letters, vol. 4, pp. 2099-2104, 2013.
    [36] Y. Shen, X. Cao, B. Zhang, D. Wei, J. Ma, W. Liu, C. Han, and Y. Shen, "Synthesis of SnO2 nanorods and application to H2 sensor," Journal of Alloys and Compounds, vol. 593, pp. 271-274, 2014.
    [37] N. Rajesh, J. C. Kannan, T. Krishnakumar, S. G. Leonardi, and G. Neri, "Sensing behavior to ethanol of tin oxide nanoparticles prepared by microwave synthesis with different irradiation time," Sensors and Actuators B: Chemical, vol. 194, pp. 96-104, 2014.
    [38] H.E. Endres, R. Hartinger, S. Drost, W. Hellmich, G. Mtiller, C. B.V. Braunmiihl, A. Krenkow, C. Perego, and G. Sberveglieri, "A thin-film SnO2 sensor system for simultaneous detection of CO and NO, with neural signal evaluation," Sensors and Actuators B vol. 35, pp. 353-357, 1996.
    [39] J. Kukkola, J. Mäklin, N. Halonen, T. Kyllönen, G. Tóth, M. Szabó, A. Shchukarev, J.-P. Mikkola, H. Jantunen, and K. Kordás, "Gas sensors based on anodic tungsten oxide," Sensors and Actuators B: Chemical, vol. 153, pp. 293-300, 2011.
    [40] H. Bai and G. Shi, "Gas sensors based on conducting polymers," Sensors, vol. 7, pp. 267-307, 2007.
    [41] P.G. Su and Y.T. Peng, "Fabrication of a room-temperature H2S gas sensor based on PPy/WO3 nanocomposite films by in-situ photopolymerization," Sensors and Actuators B: Chemical, vol. 193, pp. 637-643, 2014.
    [42] E. L. lobet, "Gas sensors using carbon nanomaterials: A review," Sensors and Actuators B: Chemical, vol. 179, pp. 32-45, 2013.
    [43] B. Zhang, R. Fu, M. Zhang, X. Dong, L. Wang, and C. U. Pittman, "Gas sensitive vapor grown carbon nanofiber/polystyrene sensors," Materials Research Bulletin, vol. 41, pp. 553-562, 2006.
    [44] A. S. Lee, O. S. Kwon, S. J. Park, E. Y. Park, S. A. You, H. Yoon, and J. Jang, "Fabrication of ultrafine metal-oxide- decorated carbon nanofibers for DMMP sensor application," ACS Nano, vol. 5, pp. 7992-8001, 2011.
    [45] J. Kong, N. R. Franklin, C. Zhou, M. G. Chapline, S. Peng, K. Cho, and H. Da, "Nanotube molecular wires as chemical sensors," Science, vol. 287, pp. 622-625, 2000.
    [46] A. Abdelhalim, A. Abdellah, G. Scarpa, and P. Lugli, "Metallic nanoparticles functionalizing carbon nanotube networks for gas sensing applications," Nanotechnology, vol. 25, p. 055208, 2014.
    [47] S. Yeo, C. Choi, C. Woong Jang, S. Lee, and Y. Min Jhon, "Sensitivity enhancement of carbon nanotube based ammonium ion sensors through surface modification by using oxygen plasma treatment," Applied Physics Letters, vol. 102, p. 073108, 2013.
    [48] H. H. Choi, J. Lee, K. Y. Dong, B. K. Ju, and W. Lee, "Noxious gas detection using carbon nanotubes with Pd nanoparticles," Nanoscale Research Letters, vol. 6, p. 605, 2011.
    [49] F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, and K. S. Novoselov, "Detection of individual gas molecules adsorbed on graphene," Nature Materials, vol. 6, pp. 652-5, 2007.
    [50] Y. H. Zhang, Y. B. Chen, K. G. Zhou, C. H. Liu, J. Zeng, H. L. Zhang, and Y. Peng, "Improving gas sensing properties of graphene by introducing dopants and defects: a first-principles study," Nanotechnology, vol. 20, p. 185504, 2009.
    [51] Z. L. Bing Huang, Zhirong Liu, Gang Zhou, Shaogang Hao, Jian Wu,Bing-Lin Gu, and Wenhui Duan, "Adsorption of gas molecules on graphene nanoribbons and its implication for nanoscale molecule sensor," The Journal of Physical Chemistry C, vol. 112, 2008.
    [52] Y. P. Dan, Y. Lu, N. J. Kybert, Z. Luo, and A. T. C. Johnson, "Intrinsic response of graphene vapor sensors," Nano Letters, vol. 9, pp. 1472-1475, 2009.
    [53] J. Dai, J. Yuan, and P. Giannozzi, "Gas adsorption on graphene doped with B, N, Al, and S: A theoretical study," Applied Physics Letters, vol. 95, p. 232105, 2009.
    [54] T. O. Wehling, M. I. Katsnelson, and A. I. Lichtenstein, "Adsorbates on graphene: Impurity states and electron scattering," Chemical Physics Letters, vol. 476, pp. 125-134, 2009.
    [55] A. C. Crowther, A. Ghassaei, N. Jung, and L. E. Brus, "Strong charge-transfer doping of 1 to 10 layer graphene by NO2," ACS Nano, vol. 6 pp. 1865-1875, 2012.
    [56] C. W. Chen, S. C. Hung, M. D. Yang, C. W. Yeh, C. H. Wu, G. C. Chi, F. Ren, and S. J. Pearton, "Oxygen sensors made by monolayer graphene under room temperature," Applied Physics Letters, vol. 99, p. 243502, 2011.
    [57] K. Yu, P. Wang, G. Lu, K.-H. Chen, Z. Bo, and J. Chen, "Patterning vertically oriented graphene sheets for nanodevice applications," The Journal of Physical Chemistry Letters, vol. 2, pp. 537-542, 2011.
    [58] M. Gautam and A. H. Jayatissa, "Detection of organic vapors by graphene films functionalized with metallic nanoparticles," Journal of Applied Physics, vol. 112, p. 114326, 2012.
    [59] S. Rumyantsev, G. Liu, M. S. Shur, R. A. Potyrailo, and A. A. Balandin, "Selective gas sensing with a single pristine graphene transistor," Nano Letters, vol. 12, pp. 2294-2298, 2012.
    [60] M. W. K. Nomani, R. Shishir, M. Qazi, D. Diwan, V. B. Shields, M. G. Spencer, G. S. Tompa, N. M. Sbrockey, and G. Koley, "Highly sensitive and selective detection of NO2 using epitaxial graphene on 6H-SiC," Sensors and Actuators B: Chemical, vol. 150, pp. 301-307, 2010.
    [61] C. Berger, Z. Song, T. Li, X. Li, A. Y. Ogbazghi, R. Feng, Z. Dai, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. d. Heer, "Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics," The Journal of Physical Chemistry B, vol. 108, pp. 19912-19916, 2004.
    [62] G. Chen, T. M. Paronyan, and A. R. Harutyunyan, "Sub-ppt gas detection with pristine graphene," Applied Physics Letters, vol. 101, p. 053119, 2012.
    [63] Y. A. Lv, G. L. Zhuang, J. G. Wang, Y. B. Jia, and Q. Xie, "Enhanced role of Al or Ga-doped graphene on the adsorption and dissociation of N2O under electric field," Physical Chemistry Chemical Physics, vol. 13, pp. 12472-12477, 2011.
    [64] Y.-H. Zhang, L.-F. Han, Y.-H. Xiao, D.-Z. Jia, Z.-H. Guo, and F. Li, "Understanding dopant and defect effect on H2S sensing performances of graphene: A first-principles study," Computational Materials Science, vol. 69, pp. 222-228, 2013.
    [65] Z. M. Ao, J. Yang, S. Li, and Q. Jiang, "Enhancement of CO detection in Al doped graphene," Chemical Physics Letters, vol. 461, pp. 276-279, 2008.
    [66] A. S. Khojin, D. Estrada, K. Y. Lin, M. H. Bae, F. Xiong, E. Pop, and R. I. Masel, "Polycrystalline graphene ribbons as chemiresistors," Advanced Materials, vol. 24, pp. 53-57, 2012.
    [67] T. H. Han, Y. K. Huang, A. T. Tan, V. P. Dravid, and J. Huang, "Steam etched porous graphene oxide network for chemical sensing," Journal of the American Chemical Society, vol. 133, pp. 15264-15267, 2011.
    [68] R. K. Paul, S. Badhulika, N. M. Saucedo, and A. Mulchandani, "Graphene nanomesh as highly sensitive chemiresistoe gas sensor," Analytica. Chemistry., vol. 84, pp. 8171-8178, 2012.
    [69] M. G. Chung, D. H. Kim, H. M. Lee, T. Kim, J. H. Choi, D. k. Seo, J.-B. Yoo, S.-H. Hong, T. J. Kang, and Y. H. Kim, "Highly sensitive NO2 gas sensor based on ozone treated graphene," Sensors and Actuators B: Chemical, vol. 166-167, pp. 172-176, 2012.
    [70] A. Lipatov, A. Varezhnikov, P. Wilson, V. Sysoev, A. Kolmakov, and A. Sinitskii, "Highly selective gas sensor arrays based on thermally reduced graphene oxide," Nanoscale, vol. 5, pp. 5426-5434, 2013.
    [71] B. S. Berry, "Diffusion of carbon in nickel," Journal of Applied Physics, vol. 44, pp. 3792-3793, 1973.
    [72] T. Alizadeh and L. H. Soltani, "Graphene/poly(methyl methacrylate) chemiresistor sensor for formaldehyde odor sensing," Journal of Hazardous Materials, vol. 248-249, pp. 401-406, 2013.
    [73] D. Zhang, J. Tong, and B. Xia, "Humidity-sensing properties of chemically reduced graphene oxide/polymer nanocomposite film sensor based on layer-by-layer nano self-assembly," Sensors and Actuators B: Chemical, vol. 197, pp. 66-72, 2014.
    [74] F. Liu, X. Chu, Y. Dong, W. Zhang, W. Sun, and L. Shen, "Acetone gas sensors based on graphene-ZnFe2O4 composite prepared by solvothermal method," Sensors and Actuators B: Chemical, vol. 188, pp. 469-474, 2013.
    [75] S. Deng, V. Tjoa, H. M. Fan, H. R. Tan, D. C. Sayle, M. Olivo, S. Mhaisalkar, J. Wei, and C. H. Sow, "Reduced graphene oxide conjugated Cu2O nanowire mesocrystals for high-performance NO2 gas sensor," Journal of the American Chemical Society, vol. 134, pp. 4905-4917, Mar 14 2012.
    [76] H. Y. Jeong, D.S. Lee, H. K. Choi, D. H. Lee, J.E. Kim, J. Y. Lee, W. J. Lee, S. O. Kim, and S.Y. Choi, "Flexible room-temperature NO gas sensors based on carbon nanotubes/reduced graphene hybrid films," Applied Physics Letters, vol. 96, p. 213105, 2010.
    [77] W. Yuan, G.Shi, "Raman characterization of ABA- and ABC-atacked trilayer graphene," Acs Nano, vol. 5, pp. 8760-8768, 2011.
    [78] S. Basu and P. Bhattacharyya, "Graphene based gas sensors," Journal of Materials Chemisty A, vol. 1, pp. 10078-10091, 2013.
    [79] Y. Hajati, T. Blom, S. H. Jafri, S. Haldar, S. Bhandary, M. Z. Shoushtari, O. Eriksson, B. Sanyal, and K. Leifer, "Improved gas sensing activity in structurally defected bilayer graphene," Nanotechnology, vol. 23, p. 505501, 2012.
    [80] S. Amini1, J. Garay1, G. Liu, A. A. Balandin, R. Abbaschian, 'Growth of large-area graphene films from metal-carbon melts', Journal of Applied Physics, vol. 108, p.094321, 2010.
    [81] C. N. G Majni, "Growth kinetics of NiSi on (100) and (111) silicon," Journal of Physics D: Applied Physics, vol. 17, pp. 77-81, 1984.
    [82] E. G. J.T. Mayer, "Surface and bulk diffusion of adsorbed nickel on ultrathin thermally grown silicon dioxide," Surface Science vol. 265, pp. 102-110, 1992.
    [83] K. Kanomata, K. Momiyama, S. Kubota, T. Suzuki, and F. Hirose, "Solid phase growth of NiSi in polycrystalline Si on SiO2 with Cl plasma containing NiCl," Applied Surface Science, vol. 268, pp. 141-145, 2013.
    [84] G. D. Nessim, A. J. Hart, J. S. Kim, D. Acquaviva, J. Oh, C. D. Morgan, M. Seita, J. S. Leib, and C. V. Thompson, "Tuning of vertically-aligned carbon nanotube diameter and areal density through catalyst pre-treatment," Nano Lett, vol. 8, pp. 3587-3593, 2008.
    [85] D. Wei, Y. Liu, Y. Wang, H. Zhang, L. Huang, and a. G. Yu, "Synthesis of N doped graphene by chemical vapor deposition and its electrical properties," Nano Letters, vol. 9, pp. 1752-1758, 2009.
    [86] D. Takagi, Y. Kobayashi, and Y. Homma, "Carbon nanotubes growth from diamond," Journal of the American Chemical Society, vol. 131, pp. 6922-6923, 2009.
    [87] N. Muradov, F. Smith, and A. T-Raissi, "Catalytic activity of carbons for methane decomposition reaction," Catalysis Today, vol. 102-103, pp. 225-233, 2005.
    [88] A. Saffarzadeh, "Modeling of gas adsorption on graphene nanoribbons," Journal of Applied Physics, vol. 107, p. 114309, 2010.
    [89] L. K. Randeniya, H. Shi, A. S. Barnard, J. Fang, P. J. Martin, and K. K. Ostrikov, "Harnessing the influence of reactive edges and defects of graphene substrates for achieving complete cycle of room-temperature molecular sensing," Small, vol. 9, pp. 3993-3999, 2013.
    [90] B. Huang, Z. Li, Z. Liu, G. Zhou, S. Hao, J. Wu, B.-L. Gu, and W. Duan, "Adsorption of gas molecules on graphene nanoribbons and Its implication for nanoscale molecule sensor," The Journal of Physical Chemistry C, vol. 112, pp. 13442-13446, 2008.
    [91] H. Choi, H. Y. Jeong, D.-S. Lee, C.-G. Choi, and S.-Y. Choi, "Flexible NO2 gas sensor using multilayer graphene films by chemical vapor deposition," Carbon letters, vol. 14, pp. 186-189, 2013.
    [92] H. Gong, Y. J. Wang, S. C. Teo, and L. Huang, "Interaction between thin-film tin oxide gas sensor and five organic vapors," Sensors and Actuators B, vol. 54, pp. 232-235, 1999.
    [93] S. Liu, F. Zhang, H. Li, T. Chen, and Y. Wang, "Acetone detection properties of single crystalline tungsten oxide plates synthesized by hydrothermal method using cetyltrimethyl ammonium bromide supermolecular template," Sensors and Actuators B: Chemical, vol. 162, pp. 259-268, 2012.

    下載圖示 校內:2018-08-08公開
    校外:2018-08-08公開
    QR CODE