簡易檢索 / 詳目顯示

研究生: 吳柏穎
Wu, Po-Ying
論文名稱: 土壤有機質對生物降解石油碳氫化合物之影響
The Effect of Soil Organic Matters on Biodegradation of Total Petroleum Hydrocarbon
指導教授: 黃良銘
Whang, Liang-Ming
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 127
中文關鍵詞: 生物復育生物降解性生物可及性土壤有機質
外文關鍵詞: Bioremediation, Biodegradability, Bioavailability, Soil Organic Matters
相關次數: 點閱:112下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 土壤污染問題日益嚴重,至今在台灣,公告為污染控制場址有693處,公告為污染整治場址有29處;在整治場址中,受石油碳氫化合物污染的有15處,占國內土壤污染案例一半以上。生物復育因其整治成本低,對環境較友善,近幾年來逐漸受到重視。而在之前的研究及實場應用中,發現生物復育有兩階段降解的現象,第二階段的降解遲滯造成生物復育操作工時過長,使生物復育的應用受到了限制。本研究希望藉由探討生物降解性及土壤有機質對生物可及性的影響來了解這個問題。
    本研究分為兩個階段,第一階段為生物降解性試驗,第二階段為有機質土壤對生物可及性的試驗。
    由生物降解性實驗中可以看到,添加的Rhodococcus erythropolis、Gordonia alkanivorans、Acinetobacter junii、Exiguobacterium aurantiacum及Serratia marcescens對Heptadecane有良好的降解效果,在5天內降解近100%,其降解速率常數為-0.0533 hr-1;對Naphthalene也有降解的效果,扣除揮發量後約降解有25%。在上述菌群再添加1株細菌(Pseudomonas aeruginosa)及2株酵母菌為(Candida guilliermondii與Candida parapsilosis)進行批次,對Pristane也有不錯的降解效果。操作17天後降解率達97%,其降解速速率常數為-0.1571 day-1。結束本階段試驗後,決定挑選Heptadecane、Pristane及Naphthalene做下一階段的生物可及性試驗。
    從生物可及性實驗可以看到,由BH Medium添加泥炭土與未添加泥炭土的試驗做比較,添加泥炭土會使Heptadecane與Pristane的生物降解變慢變差,到批次末期(1個月)仍有部分殘餘濃度。由此發現,土壤有機質會使菌群的生物可及性變差,造成降解變慢。

    The problem of soil pollution is serious day by day. There are 693 pollution control sites and 29 pollution remediation sites announced nowadays in Taiwan. In pollution remediation sites, and there are 15 sites polluted by total petroleum hydrocarbons. It takes over half of soil pollution case. Bioremediation have been paid attention in recent years because its low cost and it is relatively friendly to the environment. In previos researches and applications in real sites, we observed there are two stages of degradation in bioremediation. The lag phase of second-stage degradation causes the bioremediation time is too long. It also limits the application of bioremediation. The objective of this study is to understand the problems by researching the biodegradability and the effect of soil organic matters on bioavailability.
    This study is divided into two stages. The first stage is the biodegradability tests, and the second stage is the test of soil organic matters on bioavailability.
    In biodegradability tests, we find the bacteria we added (Rhodococcus erythropolis, Gordonia alkanivorans, Acinetobacter junii, Exiguobacterium aurantiacum and Serratia marcescens) has good degradation to Heptadecane. They degraded almost 100% in 5 days, and its degradation rate constant is -0.0533 hr-1. They also degraded Naphthalene. They degraded about 25% without the amount of volatilization. We add one species of bacterium (Pseudomonas aeruginosa) and two species of yeast (Candida guilliermondii and Candida parapsilosis) with the bacterium mentioned above into batch tests. We find they also has good degradation to Pristane. They degraded 97% in 17 days, and its degradation rate constant is -0.1571 day-1. After finishing test of this stage, we determined to select Heptadecane, Pristane and Naphthalene to do the test of bioavailability in next stage.
    We compared the tests of BH Medium with peat and BH Medium withou peat. We find the addition of peat make the biodegradation of Heptadecane and Pristane slow and less. Until the end of batch (one month later), the tests also have some residual concentrations. We can observe that, soil organic matters effect the poorness of bioavailability and cause the slowness of biodegradation.

    目錄 摘要 II Abstract III 誌謝 V 目錄 VIII 表目錄 XI 圖目錄 XIII 第 1 章 前言 1 第 2 章 文獻回顧 3 2.1 受石油污染土壤概況介紹 3 2.1.1 污染來源 3 2.1.2 土壤污染現況 4 2.1.3 土壤污染整治技術應用趨勢 9 2.2 石油碳氫化合物 13 2.2.1 石油碳氫化合物介紹 13 2.2.2 污染型態及傳輸方式 19 2.3 受石油污染土壤性質之研究 23 2.3.1 土壤特性介紹 24 2.3.2 土壤有機質 31 2.3.3 土壤中降解石油碳氫化合物微生物之介紹 34 2.4 生物降解性與生物可及性之研究 39 2.4.1 三類碳氫化合物之生物降解性探討 39 2.4.2 石油烴的微生物代謝機制 43 2.4.3 生物復育過程遲滯原因及兩階段降解現象探討 47 2.4.4 生物可及性 49 2.4.5 土壤之吸持作用 52 第 3 章 實驗材料與方法 55 3.1 研究材料 55 3.1.1 石油碳氫化合物分解菌 55 3.1.2 生物降解之化合物及藥品 56 3.1.3 土壤 58 3.1.4 培養基 58 3.2 實驗設計 59 3.2.1 生物降解性試驗 59 3.2.2 生物可及性試驗 60 3.3 分析方法 62 3.3.1 水質pH監測 62 3.3.2 水中總碳氫化合物 62 3.3.3 矽膠淨化法 63 3.3.4 土壤總碳氫化合物分析 63 3.3.5 菌落數分析(平板稀釋法) 64 第 4 章 結果與討論 67 4.1 生物降解性試驗 67 4.1.1 Heptadecane之生物降解性 67 4.1.2 Tetratriacontane之生物降解性 70 4.1.3 Naphthalene之生物降解性 72 4.1.4 Anthracene & Phenanthrene之生物降解性 74 4.1.5 Pristane之生物降解性 77 4.1.6 小結 82 4.2 生物可及性試驗 84 4.2.1 泥炭土(peat) 0g之生物降解試驗 84 4.2.2 添加泥炭土(peat)2g之生物降解試驗 88 4.2.3 添加泥炭土(peat)5g之生物降解試驗 95 4.2.4 小結 102 4.2.5 添加泥炭土(peat, 經滅菌)2g之生物降解試驗 103 4.2.6 添加泥炭土(peat, 經滅菌)5g之生物降解試驗 109 4.2.7 小結 115 第 5 章 結論與建議 116 5.1.1 生物降解性試驗 116 5.1.2 生物可及性試驗 116 5.2 建議 118 第 6 章 參考文獻 119

    王一雄,陳尊賢,土壤污染學,國立中央圖書館出版 (1995)
    王明光譯,Donald L. Sparks 原著,環境土壤化學,五南圖書,初版,(2000)
    中華民國環境工程學會主編,土壤與地下水污染整治:原理與應用, (2008)
    石濤,環境化學,景茂圖書,四版, (2000)
    台灣中油股份有限公司,石油教室,四通八達輸油網—油管與泵站,http://www.cpc.com.tw/big5/content/index01.asp?sno=198&pno=108 (2008)
    行政院環保署,全國十年以上加油站及大型儲槽潛在污染源調查計畫 (2001)柯清水,石油化學概論,正文書局 (1970)
    高俊璿,高濃度石化油污染土壤之不同微生物降解三類石油碳氫化合物研究,國立成功大學環境工程所碩士論文 (2008)
    許長春等,劉振鵬,石油煉製原理與實務,中國石油 (2003)
    張儷馨,受油污污染土壤之生物復育測試與微生物族群變化之研究,國立成功大學環境工程所碩士論文 (2008)
    經濟部工業局,石油碳氫化合物土壤及地下水污染預防與整治技術手冊 (2007)
    萬鑫森譯,國立編譯館主編,基礎土壤物理學,茂昌圖書(1987)
    蔡見能,地面儲槽洩漏污染潛勢評估及傳輸模式研究,朝陽科技大學環境工程與管理所碩士論文 (2005)
    潘祈良,應用細胞固定化技術於生物滲透性反應牆之地下水中柴油整治研究,國立成功大學環境工程所碩士論文 (2009)
    謝宗霖,以兩階段生物整治策略處理受石油碳氫化合物污染土壤復育之研究,國立成功大學環境工程所碩士論文 (2009)
    環保署土壤及地下水污染整治基金管理委員會,場址資訊,土壤及地下水污染整治網,http://sgw.epa.gov.tw/public/site_chart.asp (2008)
    April, T. M., Abbott, S. P., Foght, J. M. and Currah, R. S., Degradation of hydrocarbons in crude oil by the ascomycete Pseudallescheria boydii (Microascaceae). Canadian Journal of Microbiology 44(3): 270-278 (1998)
    April TM, Foght JM and Currah RS, Hydrocarbon-degrading filamentous fungi isolated from flare pit soils in northern and western Canada. Canadian Journal of Microbiology 46: 38-49 (2000)
    Atlas, R. M., Anassessment of the biodegradation of pertoleum in the Arctic. Microbial Ecology, Springer-Verlag,Berlin: 86-90 (1987)
    Atlas, R. M., Microbial-Degradation of Petroleum-Hydrocarbons - an Environmental Perspective. Microbiological Reviews 45(1): 180-209 (1981)
    Atlas, R. M., Petroleum biodegradation and oil spill bioremediation. Marine Pollution Bulletin 31(4-12): 178-182 (1995)
    Atlas, R. M., Petroleum Miceobiology. Macmillan Publishing Company New York (1984)
    Baheri H and Meysami, Feasibility of fungi bioaugmentation in composting a flare pit soil. Journal of hazardous materials 89: 279–286 (2001)
    Bento, F. M. and Gaylarde, C. C., Biodeterioration of stored diesel oil: studies in Brazil. International Biodeterioration & Biodegradation 47(2): 107-112 (2001).
    Bossert, I and Bartha, R, The fate of petroleum in soil ecosystems. In: Atlas RM (Ed.). Petroleum Microbiology Macmillan Publishing Company, New York: 435-476 (1984)
    Burlage, R. S., Emerging technologies:Bioreporters, biosensors and microprobes. Washington D C (1997)
    Carmody O., Frost R., Xi Y., and Kokot S., Surface characterization of selected sorbent materials for common hydrocarbon fuels. Surface Science. 601:2066~2076 (2007)
    Chaillan, F., Chaîneau, C.H., Point, V., Saliot, A. and Oudot, J., Factors inhibiting bioremediation of soil contaminated with weathered oils and drill cuttings. Environmental Pollution 144(1): 255-265 (2006)
    Chaillan, F., Gugger, M., Saliot, A., CoutÃÃ, A. and Oudot, J., Role of cyanobacteria in the biodegradation of crude oil by a tropical cyanobacterial mat. Chemosphere 62(10): 1574-1582 (2006)
    Chaillan, Frédéric, Le Flèche, Anne, Bury, Edith, Phantavong, Y-hui, Grimont, Patrick, Saliot, Alain and Oudot, Jean, Identification and biodegradation potential of tropical aerobic hydrocarbon-degrading microorganisms. Research in Microbiology 155(7): 587-595 (2004)
    Chaineau, C. H., Morel, J. , Dupont, J., Bury, E. and Oudot, J., Comparison of the fuel oil biodegradation potential of hydrocarbon-assimilating microorganisms isolated from a temperate agricultural soil. The Science of the Total Environment 227(2-3): 237-247 (1999)
    Chaineau, C. H., Rougeux, G., Yéprémian, C. and Oudot, J., Effects of nutrient concentration on the biodegradation of crude oil and associated microbial populations in the soil. Soil Biology and Biochemistry 37(8): 1490-1497 (2005)
    Chaineau, C. H., Morel, J. L. and Oudot, J., Microbial Degradation in Soil Microcosms of Fuel-Oil Hydrocarbons from Drilling Cuttings. Environmental Science & Technology 29(6): 1615-1621(1995).
    Chiou, C. T., Partition and Adsorption of Organic Contaminants in Environmental System, (2002)
    Chiou, C. T., Kile, D. E., and Malcolm, R. L., Sorption of Vapors of Some Organic Liquids on Soil Humic-Acid And Its Relation to Partitioning of Organic-Compounds in Soil Organic-Matter, Environmental Science and Technology. 22:298~303 (1988)
    Chiou, C. T.; L. J. Peter and V. H. Freed, A Physical Concept of Soil-Water Equilibria for Nonionic Organic Compounds, Science, Vol. 206, pp. 831-832, (1979)
    Chiou, C. T., Shoup, T. D., Soil sorption of organic vapors and effects of humidity on sorptive mechanism and capacity, Environ. Sci. Technol., Vol. 19, pp. 1196-1200, (1985)
    Chung, N. and M. Alexander, Differences in sequestration and bioavailability of organic compounds aged in dissimilar soils., Environ. Sci. Technol., 32 : 855-860 (1998)
    Colwell, RR and Walker, JD, Ecological aspects of microbial degradation of petro leum in the marine environment. CRC critical reviews in microbiology 15: 423-445 (1977)
    Cookson, E. W., Policing waterways for hydrocarbons. Sensor Review. 3:21~23 (1995)
    Ehlers, L. J. and R. G. Luthy, Contaminant bioavailability in soil and sediment, Environ. Sci. Technol., 37 : 295-302, (2003)
    Felbeck, G. T., Structural Chemistry of Soil Humic Substances, Adv. Agron. pp. 327-368, (1965)
    Guerin, W. F. and S. A. Boyd, Influence of sorption on biodegradation of naphthalene by soil bacteria” 82nd Annual Meeting, Soil Science Society of America., (1990)
    Koma D, Hasumi F, Yamamoto E, Ohta T, Chung SY, and Kubo M, Biodegradation of Long-Chain n-Paraffins from Waste Oil of Car Engine by Acinetobacter sp., Jornal of Bioscience and Bioengineering,, 91(1): 94-96 (2001)
    Kopinke, F. D.; Georgi, A., and Mackenzie, K., Sorption of Pyrene to Dissolved Humic Substances and Related Model Polymers. 1.Structure-Property Correlation, Environ. Sci. Technol., Vol. 35, pp. 2536-2542, (2001)
    Lambert, S. M., Functional Relationship Between Sorption in Soil and Chemical Structure, J. Agric. Food Chem., Vol. 15, pp. 572-576, (1989)
    Leahy, Joseph G., and Colwell, Rita R. Microbial Degradation of Hydrocarbons in the Environment, Microbiological Reviews. 54:305~315 (1990)
    Lee, Sang-Hwan, Lee, Seokho, Kim, Dae-Yeon and Kim, Jeong-gyu, Degradation characteristics of waste lubricants under different nutrient conditions. Journal of Hazardous Materials 143(1-2): 65-72 (2007)
    Liu, Z., A. M. Jacobson, and R. G. Luthy, Biodegradation of naphthalene in aqueous nonionic surfactant systems, Appl. Environ. Microbiol., 67 : 1428-1430 (1995)
    Mancera-Lopez ME, Esparza-Garcia F, Chavez-Gomez B, Rodriguez-Vazquez R, Saucedo-Castaneda G, Barrera-Cortes J, Bioremediation of an aged hydrocarbon-contaminated soil by a combined system of biostimulation-bioaugmentation with filamentous fungi. International Biodeterioration & Biodegradation 61: 151–160 (2008)
    Menzie, C. A., Potocki, B. B. and Santodonato, J., Exposure to Carcinogenic Pahs in the Environment. Environmental Science & Technology 26(7): 1278-1284 (1992).
    Miller, M. E. and M. Alexander, Kinetics of bacterial degradation of benzylamine in a montmorillonite suspension, Environ. Sci. Technol. 25 : 240-245 (1991)
    Mohanty G, Mukherji S, Biodegradation rate of diesel range n-alkanes by bacterial cultures Exiguobacterium aurantiacum and Burkholderia cepacia., International Biodeterioration & Biodegradation, 61: 240-250 (2008)
    Mott, S. C., P. H. Groenevelt, and R. P. Voroney, Biodegradation of a gas oil applied to aggregates of different sizes, J. Environ. Qual., 19 : 257-260 (1990)
    Nhi-Cong, L. T., Mikolasch, A., Klenk, H. P. and Schauer, F., Degradation of the multiple branched alkane 2,6,10,14-tetramethyl-pentadecane (pristane) in Rhodococcus ruber and Mycobacterium neoaurum, International Biodeterioration & Biodegradation, 63: 201-207 (2009)
    Ortega-Calvo, J. J., Lahlou, M. and Saiz-Jimenez, C., Effect of organic matter and clays on the biodegradation of phenanthrene in soils. International Biodeterioration & Biodegradation 40(2-4): 101-106(1997).
    Oudot J, Dupont J, Haloui S and Roquebert MF, Biodegradation potential of hydrocarbon-assimilating tropical fungi, Soil Biology and biochemistry 25(9): 1167-1173 (1993)
    Oudot J, Merlin FX and Pinvidic P, Weathering Rates of oil components in a bioremediation experiment in Estuarine Sediments. Marine Environmental Research 45(2): 113-125 (1997)
    Oudot J, Rates of microbial degradation of petroleum components as determined by computerized capillary gas chromatography and computerized mass spectrometry. Mar Environ Res 13: 277-302 (1984)
    Palmer, C. J., and Johnson, R. L., Physical Processes Controlling the Transport of Non-Aqueous Phase Liquids in the Surface, Seminar Publication:Transport and Fate of Contaminants in the Subsurface,Chapter 3, EPA/625/4-89/019, 23~28 (1989)
    Rehm, H. J., and Reiff, I., Mechanism and occurrence of microbial oxidation of long-chain alkanes. Adv. Bioeng. 24:1241~1269 (1981)
    Reid, B. J., Jones, K. C. and Semple, K. T., Bioavailability of persistent organic pollutants in soils and sediments - a perspective on mechanisms, consequences and assessment. Environmental Pollution 108(1): 103-112(1999)
    Rittman, B. E., Valocchi, A. J., and Seagren, E. A Critical Review of In-Situ Bioremediation. University of Illinois at Urbana-Champaign (1991)
    Schwarzenbach, R. P., and Westall., Transport of Nonpolar Organic Compounds from Surface Water to Groundwater, Environmental Science and Technology. 15:1360~1367 (1981)Semple, K. T., A. W. J. Morriss, and G. I. Paton, Bioavailability of hydrophobic organic contaminants in soils: fundamental concepts and techniques for analysis, Euro. J. Soil Sci., 54 : 809-818 (2003)
    Semple, K. T., K. J. Doick., K. C. Jones., A. Craven., P. Burauel, and H. Harms Defining bioavailability and bioaccessibility for the risk assessment and remediation of contaminated soils and sediments Environ. Sci. Technol., 38 : 228A-231A. (2004)
    Singer, M. E., and Finnerty, W. R., Microbial metabolism of straight-chain and branched alkanes, Petroleum microbiology. Macmillan Publishing Co., New York (1984)
    Stevenson, F. J., Human Chemistry Genesis, Composition, Reactions., Wiley, J and Sons, INC, pp337-354 (1982)
    US DA, Soil Survey Manual, Handbook 18 (1993)
    US EPA, Aerobic Biodegradation of Oily Wastes A Field Guidance Book For Federal On-scene Coordinators, (2003)
    US EPA, How to Evaluate Alternative Cleanup Technologies for Underground Storage Tank Sites A Guide for Corrective Action Plan Reviewers, EPA 510-b-94 (2004)
    US EPA, In Situ and Ex Situ Biodegradation Technologies for Remediation of Contaminated Sites, Engineering Issue, (2006)
    US EPA, Monitored Natural Attenuation of Petroleum Hydrocarbons, U.S.EPA REMEDIAL TECHNOLOGY FACT SHEET, EPA/600/F-98/021 (1999)
    US EPA, Treatment Technologies for Site Cleanup: Annual Status Report (Twelfth Edition), (2007)
    Van-Hamme, J. D., Singh, A., and Ward, O. P., Recent Advances in Petroleum Microbiology. Microbiology and Molecular Biology Reviews. 67(4):503~549 (2003)
    Wang, S. Y. and C. Vipulanandan, Biodegradation of naphthalene contaminated soils in slurry bioreactors, J. Environ. Eng. ASCE, 127 : 748-754 (2001)
    White, J. C., J. W. Kelsey, P. B. Hatzinger, and M. Alexander, Factors affecting sequestration and bioavailability of phenanthrene in soils, Environ. Toxic. Chem., 16 : 2040-2045 (1997)

    下載圖示 校內:2012-08-25公開
    校外:2012-08-25公開
    QR CODE