簡易檢索 / 詳目顯示

研究生: 謝宏嘉
Hsieh, Hung-Chia
論文名稱: 零價鐵奈米粒子在肺癌中透過抑制NRF2以誘導Ferroptosis細胞死亡並抑制腫瘤生長與轉移
NRF2 inhibition mediates zero-valent iron nanoparticle-induced ferroptosis and anti-tumor effects in non-small cell lung cancer
指導教授: 王憶卿
Wang, Yi-Ching
學位類別: 碩士
Master
系所名稱: 醫學院 - 藥理學研究所
Department of Pharmacology
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 77
中文關鍵詞: 肺癌Ferroptosis奈米粒子ZVI@AgNRF2
外文關鍵詞: Lung cancer, Ferroptosis, Nanoparticle, ZVI@Ag, NRF2
相關次數: 點閱:56下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 研究背景: Ferroptosis是一種新穎的程序性死亡,此類的細胞死亡方式以鐵離子的堆積、活性氧化物累積以及脂質過氧化為特性。我們研究團隊發展了一種以零價鐵為核心的奈米藥物,名為ZVI@Ag,在口腔癌模式具有抗癌潛力。
    研究目的: 本研究目的旨在探討ZVI@Ag是否在非小細胞肺癌中,不論是細胞或是活體的實驗,能夠誘導ferroptosis細胞死亡;並進一步探討ZVI@Ag毒殺癌細胞的分子機制。
    研究結果: 在細胞實驗中ZVI@Ag對於不同非小細胞肺癌都具有明顯且專一的毒殺能力,相較於肺部正常細胞則沒有損害;ZVI@Ag也具有抑制癌症球體(sphere)生長以及降低癌幹細胞和促進血管新生基因表現的特性。重要的是,在活體實驗中,ZVI@Ag具有抑制從貼盤細胞以及癌症球體異種移植腫瘤(xenograft)的能力和減少血管內皮細胞的浸潤進而抑制肺轉移,並且對於活體本身無明顯毒性。為了證實ZVI@Ag能夠誘導ferroptosis而導致細胞死亡,穿透式電子顯微鏡發現ZVI@Ag改變了粒線體的結構並降低了粒線體膜電位、氧氣消耗速率以及ATP產量,進而使得粒線體活性降低;除此之外,ZVI@Ag造成癌細胞大量活性氧化物累積以及脂質的過氧化進而殺死癌細胞,在同時使用抗氧化劑或ferroptosis抑制劑時,確實能夠減緩ZVI@Ag所誘導的細胞死亡,證實ZVI@Ag能夠誘導ferroptosis細胞死亡的發生。在細胞內氧化還原的恆定中,轉錄因子NRF2 (nuclear factor-erythroid 2-related factor 2)扮演很重要的角色,且被視為ferroptosis的負向調控者;值得注意的是,本研究發現ZVI@Ag能夠抑制癌細胞中氧化還原恆定轉錄因子NRF2的蛋白表現量,進而抑制NRF2所調控的抗氧化基因。西方墨點及免疫螢光染色的實驗證實ZVI@Ag促進了GSK3β磷酸化NRF2,並增強β-TrCP對磷酸化的NRF2降解的現象;若同時使用GSK3β抑制劑,則看到NRF2蛋白不受ZVI@Ag抑制,顯示ZVI@Ag誘導GSK3β/β-TrCP路徑而降解NRF2,而使癌細胞內氧化還原失去恆定,最終導致ferroptosis細胞死亡。
    結論:本研究發展了一個具有抗癌潛力的奈米粒子,且揭露了NRF2在以鐵為核心的奈米粒子所誘導的非小細胞肺癌ferroptosis細胞死亡的重要性。

    Background: Ferroptosis is a novel programmed cell death, which is characterized by iron accumulation, reactive oxygen species (ROS) production and lipid peroxidation. Recently, we developed an iron-based nanoparticle named ZVI@Ag, which exerts potential anti-cancer effect in oral cancer model.
    Purpose: This study aims to investigate whether ZVI@Ag induces ferroptosis cell death in non-small cell cancer (NSCLC) in vitro and in vivo. In addition, molecular mechanisms involved in cytotoxic effects of ZVI@Ag are explored.
    Results: ZVI@Ag showed significant cancer-specific cytotoxicity in various NSCLC cells without apparent adverse effect toward to normal lung cells at the dose range examined by MTT assay. In addition, ZVI@Ag inhibited cancer sphere growth and expression of stemness genes and angiogenesis genes. Importantly, ZVI@Ag reduced in vivo tumor growth, endothelial cell infiltration and lung metastasis without detectable toxicity of treated animals. To confirm the ferroptotic death at the cellular level, transmission electron microscopy imaging and activity assays showed that ZVI@Ag damaged mitochondrial structure, increased ROS levels in mitochondrial and loss its membrane potential and decreased ATP production. Moreover, ZVI@Ag treatment increased strong intracellular ROS levels and lipid peroxidation. Importantly, addition of antioxidants or ferroptosis inhibitors rescued ZVI@Ag induced cell death, indicating that ZVI@Ag induced ferroptotic cell death. In response to oxidative stress, nuclear factor-E2-related factor 2 (NRF2), a central transcription factor in regulating cellular redox homeostasis, is recognized as a ferroptosis negative regulator. Notably, NRF2 protein expression and mRNA expression of its targeting antioxidant genes were significantly reduced after ZVI@Ag treatment. Immunoblotting and immunofluorescent results showed that NRF2 was phosphorylated by glycogen synthase kinase-3β (GSK3β), which enhanced recruitment of β-transducing repeat-containing protein (β-TrCP), an E3-ligase, for protein degradation of NRF2 upon ZVI@Ag treatment. Inversely, co-treatment with GSK3β inhibitor attenuated NRF2 protein expression suppressed by ZVI@Ag treatment, indicating that ZVI@Ag enhanced NRF2 degradation via induction of GSK-3β/β-TrCP signaling pathway.
    Conclusions: This study develops a new nanoparticle-based anticancer drug and reveals that NRF2 plays a central role in ferroptosis cell death induced by this iron-core nanoparticle in NSCLC model.

    Introduction 1 I. Lung cancer (A). Epidemiology of lung cancer 1 (B). Therapeutic strategies in lung cancer 1 (C). Nanoparticle for lung cancer therapy 2 II. Redox homeostasis in cancer cells (A). NADPH and glutathione in cellular redox homeostasis 3 (B). NRF2 targeting antioxidant genes 4 (C). Regulation of NRF2 at protein level 5 (D). The dual role of NRF2 in cancer 6 III. Oxidative stress induced cell death (A). Fenton reaction-iron overloading-induced oxidative stress 8 (B). Overview of ferroptosis 9 (a) Morphology of ferroptotic cell 9 (b) Regulation of ferroptosis 9 (c) Common ferroptosis agents 10 (C). Intrinsic apoptotic pathway 11 Study basis and specific aims 13 Materials and methods 15 1. Cell lines and culture conditions 15 2. Preparation of ZVI@Ag 15 3. Cell viability assay 16 4. Soft agar growth assay 16 5. Cancer sphere formation assay 17 6. Tube formation assay 17 7. Endothelial cell transwell migration assay 17 8. Intracellular reactive oxygen species (ROS) and lipid peroxidation measurement 18 9. Mitochondrial ROS and mitochondrial membrane potential analysis 19 10. Determination of cell apoptosis 19 11. Mitochondrial respiration function measurement 19 12. Total ATP and NADPH determination assays 20 13. Transfection of plasmids 20 14. RNA extraction and quantitative reverse transcriptase-polymerase chain reaction (RT-qPCR) assays 21 15. Western blot 21 16. Chromatin immunoprecipitation assay 22 17. Immunofluorescence and immunochemistry assay 23 18. Transmission electron microscope imaging 23 19. Animal model –in vivo tumor growth assay and lung spontaneous metastasis model 24 20. Organ [Fe] distribution analysis 24 21. Statistical analysis 24 Results 25 I. ZVI@Ag showed cancer-specific cytotoxicity as well as anti-cancer stemness and anti-neoangiogenesis effects in vitro ---------------------- 25 II. Oxidative stress induced by ZVI@Ag caused lipid peroxidation and mitochondrial dysfunction---------------------------------------------- 26 III. ZVI@Ag inhibited protein expression of NRF2 and mRNA expression of its downstream antioxidant genes-------------------------- 27 IV. ZVI@Ag enhanced GSK3β/β-TrCP-dependent NRF2 degradation system------------------------------------------------------------ 28 V. ZVI@Ag prolonged treatment induced apoptosis cell death------------ 29 VI. ZVI@Ag inhibited in vivo tumor growth and lung metastasis without apparent side effects------------------------------------------------- 30 Discussion 33 References 37 Tables 45 Figures 51 Appendix Tables and Figures 72

    Alamgeer M, Ganju V, Watkins DN. (2013) Novel therapeutic targets in non-small cell lung cancer. Curr Opin Pharmacol. 13(3):394-401.
    Arbour KC, Jordan E, Kim HR, Dienstag J, Yu HA, Sanchez-Vega F, Lito P, Berger M, Solit DB, Hellmann M, Kris MG, Rudin CM, Ni A, Arcila M, Ladanyi M, Riely GJ. (2018) Effects of co-occurring genomic alterations on outcomes in patients with KRAS-mutant non-small cell lung cancer. Clin Cancer Res. 24(2):334-340.
    Ayob AZ, Ramasamy TS. (2018) Cancer stem cells as key drivers of tumour progression. J Biomed Sci. 6;25(1):20.
    Baertling F, Sánchez-Caballero L, van den Brand MAM, Wintjes LT, Brink M, van den Brandt FA, Wilson C, Rodenburg RJT, Nijtmans LGJ. (2017) NDUFAF4 variants are associated with Leigh syndrome and cause a specific mitochondrial complex I assembly defect. Eur J Hum Genet. 25(11):1273-1277.
    Bobo D, Robinson KJ, Islam J, Thurecht KJ, Corrie SR. (2016) Nanoparticle-based medicines: a review of FDA-approved materials and clinical trials to date. Pharm Res. 33(10):2373-2387.
    Campbell KJ, Tait SWG. (2018) Targeting BCL-2 regulated apoptosis in cancer. Open Bio. 8(5): 180002.
    Carroll KJ, Hudgins DM, Spurgeon S, Kemner KM, Mishra B, Boyanov MI, Brown LW, Taheri ML, Carpenter EE. (2010) One-Pot aqueous synthesis of Fe and Ag core/shell nanoparticles. Chem. Mater. 22: 6291-6296.
    Chan BA, Hughes BGM. (2015) Targeted therapy for non-small cell lung cancer: current standards and the promise of the future. Transl Lung Cancer Res. 4(1):36-54.
    Charvet C, Wissler M, Brauns-Schubert P, Wang SJ, Tang Y, Sigloch FC, Mellert H, Brandenburg M, Lindner SE, Breit B, Green DR, McMahon SB, Borner C, Gu W, Maurer U. (2011) Phosphorylation of Tip60 by GSK-3 determines the induction of PUMA and apoptosis by p53. Mol Cell. 42(5):584-96.
    Chen D, Tavana O, Chu B, Erber L, Chen Y, Baer R, Gu W. (2017) NRF2 is a major target of ARF in p53-independent tumor suppression. Mol Cell. 68(1):224-232.e4.
    Chen J, Yu Y, Ji T, Ma R, Chen M, Li G, Li F, Ding Q, Kang Q, Huang D, Liang X, Lin H, Cai X. (2016) Clinical implication of Keap1 and phosphorylated Nrf2 expression in hepatocellular carcinoma. Cancer Med. 5(10):2678-2687.
    Chorley BN, Campbell MR, Wang X, Karaca M, Sambandan D, Bangura F, Xue P, Pi J, Kleeberger SR, Bell DA. (2012) Identification of novel NRF2-regulated genes by ChIP-Seq: influence on retinoid X receptor alpha. Nucleic Acids Res. 40(15):7416-29.
    Chou SW, Shau YH, Wu PC, Yang YS, Shieh DB, Chen CC. (2010) In vitro and in vivo studies of FePt nanoparticles for dual modal CT/MRI molecular imaging. J Am Chem Soc. 132(38):13270-8.
    Chouly C, Pouliquen D, Lucet I, Jeune JJ, Jallet P. (1996) Development of superparamagnetic nanoparticles for MRI: effect of particle size, charge and surface nature on biodistribution. J Microencapsul. 13(3):245-55.
    Cryer AM, Thorley AJ. (2019) Nanotechnology in the diagnosis and treatment of lung cancer. Pharmacol Ther. 198:189-205.
    Cullinan SB, Gordan JD, Jin J, Harper JW, Diehl JA. (2004) The keap1-BTB potein is an adaptor that bridges Nrf2 to a Cul3-based E3 ligase: oxidative stress sensing by a Cul3-keap1 ligase. Mol Cell Biol. 24(19):8477–8486.
    Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS, Morrison B, Stockwell BR. (2012) Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell. 149(5):1060-1072.
    Dixon SJ, Stockwell BR. (2014) The role of iron and reactive oxygen species in cell death. Nat Chem Biol. 10(1):9-17.
    Doll S, Freitas FP, Shah R, Aldrovandi M, da Silva MC, Ingold I, Grocin AG, Xavier da Silva TN, Panzilius E, Scheel CH, Mourão A, Buday K, Sato M, Wanninger J, Vignane T, Mohana V, Rehberg M, Flatley A, Schepers A, Kurz A, White D, Sauer M, Sattler M, Tate EW, Schmitz W, Schulze A, O'Donnell V, Proneth B, Popowicz GM, Pratt DA, Angeli JPF, Conrad M. (2019) FSP1 is a glutathione-independent ferroptosis suppressor. Nature. 575(7784):693-698.
    Franco R, Cidlowski JA. (2012) Glutathione efflux and cell death. Antioxid Redox Signal. 17(12):1694-1713.
    Grassilli E, Narloch R, Federzoni E, Ianzano L, Pisano F, Giovannoni R, Romano G, Masiero L, Leone BE, Bonin S, Donada M, Stanta G, Helin K, Lavitrano M. (2013) Inhibition of GSK3B bypass drug resistance of p53-null colon carcinomas by enabling necroptosis in response to chemotherapy. Clin Cancer Res. 19(14):3820-31.Hayes JD, Dinkova-Kostova AT. (2014) The Nrf2 regulatory network provides an interface between redox and intermediary metabolism. Trends Biochem Sci. 39(4):199-218.
    Huang KJ, Wei YH, Chiu YC, Wu SR, Shieh DB. (2019) Assessment of zero-valent iron-based nanotherapeutics for ferroptosis induction and resensitization strategy in cancer cells. Biomater Sci. 7(4):1311-1322.
    Hughes MF, Long TC, Boyes WK, Ramabhadran R. (2013) Whole-body retention and distribution of orally administered radiolabelled zerovalent iron nanoparticles in mice. Nanotoxicology. 7(6):1064-9.
    Isohookana J, Haapasaari KM, Soini Y, Karihtala P. (2015) Keap1 expression has independent prognostic value in pancreatic adenocarcinomas. Diagn Pathol. 10:28.
    Jiang T, Chen N, Zhao F, Wang XJ, Kong B, Zheng W, Zhang DD. (2010) High levels of Nrf2 determine chemoresistance in type II endometrial cancer. Cancer Res. 70(13):5486-5496.
    Kale J, Osterlund EJ, Andrews DW. (2018) BCL-2 family proteins: changing partners in the dance towards death. Cell Death Differ. 25(1):65-80.
    Kawasaki Y, Okumura H, Uchikado Y, Kita Y, Sasaki K, Owaki T, Ishigami S, Natsugoe S. (2014) Nrf2 is useful for predicting the effect of chemoradiation therapy on esophageal squamous cell carcinoma. Ann Surg Oncol. 21(7):2347-2352.
    Kitamura H, Motohashi H. (2018) NRF2 addiction in cancer cells. Cancer Sci. 109(4):900-911.
    Kobayashi EH, Suzuki T, Funayama R, Nagashima T, Hayashi M, Sekine H1, Tanaka N, Moriguchi T, Motohashi H, Nakayama K, Yamamoto M. (2016) Nrf2 suppresses macrophage inflammatory response by blocking proinflammatory cytokine transcription. Nat Commun. 23;7:11624.
    Latunde-Dada GO. (2017) Ferroptosis: Role of lipid peroxidation, iron and ferritinophagy. Biochim Biophys Acta Gen Subj. 1861(8):1893-1900.
    Lemjabbar-Alaoui H, Hassan OU, Yang YW, Buchanan P. (2016) Lung cancer: biology and treatment options. Biochim Biophys Acta. 1856(2):189-210.
    Liao SY, Kuo IY, Chen YT, Liao PC, Liu YF, Wu HY, Lai WW, Wang YC. (2019) AKT-mediated phosphorylation enhances protein stability and transcription activity of ZNF322A to promote lung cancer progression. Oncogene. 38(41):6723-6736.
    Liu T, Zhang L, Joo D, Sun SC. (2017) NF-κB signaling in inflammation. Signal Transduct Target Ther. 2:17023.
    Lu B, Chen XB, Ying MD, He QJ, Cao J, Yang B. (2018) The role of ferroptosis in cancer development and treatment response. Front Pharmacol. 12;8:992.
    Maj T, Wang W, Crespo J, Zhang H, Wang W, Wei S, Zhao L, Vatan L, Shao I, Szeliga W, Lyssiotis C, Liu JR, Kryczek I, Zou W. (2017) Oxidative stress controls regulatory T cell apoptosis and suppressor activity and PD-L1-blockade resistance in tumor. Nat Immunol. 18(12):1332-1341.
    Miao W, Hu L, Scrivens PJ, Batist G. (2005) Transcriptional regulation of NF-E2 p45-related factor expression by the aryl hydrocarbon receptor-xenobiotic response element signaling pathway: direct cross-talk between phase I and II drug-metabolizing enzymes. J Biol Chem. 280(21):20340-8.
    Mitsuishi Y, Taguchi K, Kawatani Y, Shibata T, Nukiwa T, Aburatani H, Yamamoto M, Motohashi H. (2012) Nrf2 redirects glucose and glutamine into anabolic pathways in metabolic reprogramming. Cancer Cell. 22(1):66-79.
    Mou Y, Wang J, Wu J, He D, Zhang C, Duan C, Li B. (2019) Ferroptosis, a new form of cell death: opportunities and challenges in cancer. J Hematol Oncol. 12(1):34.
    Niture SK, Jaiswal AK. (2012) Nrf2 protein up-regulates antiapoptotic protein Bcl-2 and prevents cellular apoptosis. J Biol Chem. 287(13):9873-9886.
    Okada S. (1996) Iron-induced tissue damage and cancer: the role of reactive oxygen species-free radicals. Pathol Int. 46(5):311-332.
    Onodera Y, Motohashi H, Takagi K, Miki Y, Shibahara Y, Watanabe M, Ishida T, Hirakawa H, Sasano H, Yamamoto M, Suzuki T. (2014) Endocr Relat Cancer. 21(2):241-252.
    Oun R, Moussa YE, Wheate NJ. (2018) The side effects of platinum-based chemotherapy drugs: a review for chemists. Dalton Trans. 15;47(19):6645-6653.
    Pal SK, Reckamp K, Yu H, Figlin RA. (2010) Akt inhibitors in clinical development for the treatment of cancer. Expert Opin Investig Drugs. 19(11):1355-1366.
    Panieri E, Santoro MM. (2016) ROS homeostasis and metabolism: a dangerous liason in cancer cells. Cell Death Dis. 7(6):e2253.
    Penning TM. (2017) Aldo-keto reductase regulation by the Nrf2 system: implications for stress response, chemotherapy drug resistance, and carcinogenesis. Chem Res Toxicol. 30(1):162-176.
    Rada P, Rojo AI, Chowdhry S, McMahon M, Hayes JD, Cuadrado A. (2011) SCF/β-TrCP promotes glycogen synthase kinase 3-dependent degradation of the Nrf2 transcription factor in a keap1-independent manner. Mol Cell Biol 31(6):1121-1133.
    Ranji-Burachaloo H, Gurr PA, Dunstan DE, Qiao GG. (2018) Cancer teatment through nanoparticle-facilitated fenton reaction. ACS Nano. 12(12):11819-11837.
    Ren D, Villeneuve NF, Jiang T, Wu T, Lau A, Toppin HA, Zhang DD. (2011) Brusatol enhances the efficacy of chemotherapy by inhibiting the Nrf2-mediated defense mechanism. Proc Natl Acad Sci U S A. 108(4):1433-1438.
    Romero R, Sayin VI, Davidson SM, Bauer MR, Singh SX, LeBoeuf SE, Karakousi TR, Ellis DC, Bhutkar A, Sánchez-Rivera FJ, Subbaraj L, Martinez B, Bronson RT, Prigge JR, Schmidt EE, Thomas CJ, Goparaju C, Davies A, Dolgalev I, Heguy A, Allaj V, Poirier JT, Moreira AL, Rudin CM, Pass HI, Vander Heiden MG, Jacks T, Papagiannakopoulos T. (2017) Keap1 loss promotes Kras-driven lung cancer and results in dependence on glutaminolysis. Nat Med. 23(11):1362-1368.
    Shen Z, Liu T, Li Y, Lau J, Yang Z, Fan W, Zhou Z, Shi C, Ke C, Bregadze VI, Mandal SK, Liu Y, Li Z, Xue T, Zhu G, Munasinghe J, Niu G, Wu A, Chen X. (2018) Fenton-reaction-acceleratable magnetic nanoparticles for ferroptosis therapy of orthotopic brain tumors. ACS Nano. 12(11):11355-11365.
    Shibata T, Kokubu A, Saito S, Narisawa-Saito M, Sasaki H, Aoyagi K, Yoshimatsu Y, Tachimori Y, Kushima R, Kiyono T, Yamamoto M. (2011) NRF2 mutation confers malignant potential and resistance to chemoradiation therapy in advanced esophageal squamous cancer. Neoplasia. 13(9):864-873.
    Shibata T, Saito S, Kokubu A, Suzuki T, Yamamoto M, Hirohashi S. (2010) Global downstream pathway analysis reveals a dependence of oncogenic NF-E2-related factor 2 mutation on the mTOR growth signaling pathway. Cancer Res. 70(22):9095-105.
    Siegel RL, Miller KD, Jemal A. (2019) Cancer statistics, 2019. CA Cancer J Clin. 69(1):7-34.
    Singh A, Misra V, Thimmulappa RK, Lee H, Ames S, Hoque MO, Herman JG, Baylin SB, Sidransky D, Gabrielson E, Brock MV, Shyam Biswal. (2006) Dysfunctional KEAP1–NRF2 interaction in non-small-cell lung cancer. PLoS Med. 3(10):e420.
    Solis LM, Behrens C, Dong W, Suraokar M, Ozburn NC, Moran CA, Corvalan AH, Biswal S, Swisher SG, Bekele BN, Minna JD, Stewart DJ, Wistuba. (2010) Nrf2 and Keap1 abnormalities in non-small cell lung carcinoma and association with clinicopathologic features. Clin Cancer Res. 16(14):3743-3753.
    Stockwell BR, Angeli JPF, Bayir H, Bush AI, Conrad M, Dixon S, Fulda S, Gascon S, Hatzios SK., Kagan V, Noel K, Jiang X, Linkermann A, Murphy ME, Overholtzer M, Oyagi A, Pagnussat G, Park J, Ran Q, Rosenfeld CS, Salnikow K, Tang D, Torti F, Torti S, Toyokuni S,. Woerpel KA, Zhang DD. (2017) Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease. Cell. 171(2):273-285.
    Sun X, Ou Z, Chen R, Niu X, Chen D, Kang R, Tang D. (2016) Activation of the p62-Keap1-NRF2 pathway protects against ferroptosis in hepatocellular carcinoma cells. Hepatology. 63(1):173-184.
    Taiwan Ministry of Health and Welfare. (2019) General health statistics. https://www.mohw.gov.tw/lp-137-2.html
    Tonelli C, Chio IIC, David A, Tuveson DA. (2018) Transcriptional regulation by Nrf2. Antioxid Redox Signal. 29(17):1727-1745.
    Ventola CL. (2017) Progress in nanomedicine: approved and investigational nanodrugs. P T. 42(12): 742-755.
    Villeneuve NF, Lau A, Zhang DD. (2010) Regulation of the Nrf2–Keap1 antioxidant response by the ubiquitin proteasome system: an insight into cullin-ring ubiquitin ligases. Antioxid Redox Signal. 13(11):1699-1712.
    Wu KC, Cui JY, Klaassen CD. (2011) Beneficial role of Nrf2 in regulating NADPH generation and consumption. Toxicol Sci. 123(2):590-600.
    Wu S, Lu H, Bai Y. (2019) Nrf2 in cancers: A double‐edged sword. Cancer Med. 8(5):2252-2267.
    Wu SG, Liu YN, Tsai MF, Chang YL, Yu CJ, Yang PC, Yang JC, Wen YF, Shih JY (2016). The mechanism of acquired resistance to irreversible EGFR tyrosine kinase inhibitor-afatinib in lung adenocarcinoma patients. Oncotarget. 7(11):12404-12413.
    Xie Y, Hou W, Song X, Yu Y, Huang J, Sun X, Kang R, Tang D. (2016) Ferroptosis: process and function. Cell Death Differ. 23(3):369-379.
    Xing Y, Lin NU, Maurer MA, Chen H, Mahvash A, Sahin A, Akcakanat A1, Li Y, Abramson V, Litton J, Chavez-MacGregor M, Valero V, Piha-Paul SA, Hong D, Do KA, Tarco E1, Riall D, Eterovic AK, Wulf GM, Cantley LC, Mills GB, Doyle LA, Winer E, Hortobagyi GN, Gonzalez-Angulo AM, Meric-Bernstam F. (2019) Phase II trial of AKT inhibitor MK-2206 in patients with advanced breast cancer who have tumors with PIK3CA or AKT mutations, and/or PTEN loss/PTEN mutation. Breast Cancer Res. 5;21(1):78.
    Yang LX, Wu YN, Wang PW, Su WC, Shieh DB. (2019) Iron release profile of silica-modified zero-valent iron NPs and their implication in cancer therapy. Int J Mol Sci. 20(18):4336.
    Yang WS, SriRamaratnam R, Welsch ME, Shimada K, Skouta R, Viswanathan VS, Cheah JH, Clemons PA, Shamji AF, Clish CB, Brown LM, Girotti AW, Cornish VW, Schreiber SL, Stockwell BR. (2014) Regulation of ferroptotic cancer cell death by GPX4. Cell. 156(1-2):317-331.
    Yang WS, Stockwell BR. (2008) Synthetic lethal screening identifies compounds activating iron-dependent, nonapoptotic cell death in oncogenic-RAS-harboring cancer cells. Chem Biol. 15(3):234-245.
    Yu H, Guo P, Xie X, Wang Y, Chen G. (2017) Ferroptosis, a new form of cell death, and its relationships with tumourous diseases. J Cell Mol Med. 21(4):648-657.
    Zappa C, Mousa SA. (2016) Non-small cell lung cancer: current treatment and future advances. Transl Lung Cancer Res. 5(3):288-300.
    Zeng CM, Chang LL, Ying MD, Cao J, He QJ, Zhu H, Yang B. (2017) Aldo-keto reductase AKR1C1-AKR1C4: functions, regulation, and intervention for anti-cancer therapy. Front Pharmacol. 8:119.
    Zhang K, Chen D, Ma K, Wu X, Hao H, Jiang S. (2018) NAD(P)H:quinone oxidoreductase 1 (NQO1) as a therapeutic and diagnostic target in cancer. J Med Chem. 61(16):6983-7003.
    Zhang M, Mathur A, Zhang Y, Xi S, Atay S, Hong JA, Datrice N, Upham T, Kemp CD, Ripley RT, Wiegand G, Avital I, Fetsch P, Mani H, Zlott D, Robey R, Bates SE, Li X, Rao M, Schrump DS. (2012) Mithramycin represses basal and cigarette smoke-induced expression of ABCG2 and inhibits stem cell signaling in lung and esophageal cancer cells. Cancer Res. 72(16):4178-92.

    無法下載圖示 校內:2023-02-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE