簡易檢索 / 詳目顯示

研究生: 陳履謙
Chen, Lyu-Cian
論文名稱: 基於適地性服務之地點與行動分析方法研究:以零售點推薦為例
On Method of Location and Mobility Analytics with Location-based Service: A Case Study of Retail Store Recommendation
指導教授: 陳裕民
Chen, Yuh-Min
共同指導教授: 陳宗義
Chen, Tsung-Yi
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 製造資訊與系統研究所
Institute of Manufacturing Information and Systems
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 122
中文關鍵詞: 城市探勘時間與空間探勘適地性服務零售點推薦機器學習特徵萃取
外文關鍵詞: Urban mining, Spatial and temporal data mining, Location-based Service, Retail store recommendation
相關次數: 點閱:108下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,適地性服務(Location-based Service)搭上行動網路普及的風潮,於企業而言已成為一行銷的重要利器。於零售業者,零售店面位置之選擇與適當的行銷手法,能大幅度的增加產品曝光度及獲利。但零售店面位置選擇之議題,在分析資料之蒐集上著實困難,故本研究利用適地性社群網路資料,透過分析使用者足跡與興趣點之關聯性,發展一個零售點推薦之方法。
    透過目標區域關聯性分析與人群移動模式萃取,本研究建立零售點推薦之特徵值(Features)。本研究設計興趣點間之產業密度(Density)、區域類別(Category)與區域/產業分群(Clustering),以及區域飽和度的計算,以核密度估計(Kernel Density Estimation, KDE)、k-平均演算法(k-Means)等方法,計算區域關聯性對零售點選擇之影響。另外,本研究建立人群移動模式擷取方法,以循序模式探勘(Sequential Pattern Mining)方法選取最常行動之路徑,以量化人群行動對候選零售點之影響力。本研究分別對興趣點分析與行動路徑產生多個特徵值,並採以排名品質指標(Nomalized Discounted Cumulative Gain, NDCG)衡量多個特徵值之有效性。最後,本研究使用Foursquare與Facebook的資料集進行零售點推薦之實驗,以CART決策樹(Classification and Regression Tree)演算法進行零售點推薦。在本研究所萃取的特徵值中部分表現相當優異,且建立了以適地性服務進行零售點推薦的方法,並實際以台南地區的店面進行推薦。

    In recent years, with the popularization of mobile network, the location-based service (LBS) has made great strides, becoming an efficient marketing instrument for enterprises. For the retail business, good selections of store and appropriate marketing techniques are critical to increasing the profit. However, it is difficult to select the retail store because there are numerous considerations and the analysis was short of metadata in the past. Therefore, this study uses LBS, and provides a recommendation method for retail store selection by analyzing the relationship between the user track and point-of-interest (POI).
    This study uses regional relevance and human mobility analysis to establish the feature values of retail store recommendation. This study proposes (1) architecture of the data model available for retail store recommendation by influential layers of LBS, and System-based solution for recommendation of retail stores; (2) Industry density, area categories and region/industry clustering methods of POIs. Uses KDE and KMeans to calculate the effect of regional functionality on the retail store selection; (3) Provide a mobility (sequence) feature extraction method to measure mobility track. Finally, give an evaluation and implementation for the result.

    摘要 I 誌謝 VI 目次 VII 表目錄 IX 圖目錄 X 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機 2 1.3 研究目的 4 1.4 問題分析 5 1.5 研究項目 8 1.6 研究步驟 9 1.7 論文架構 12 第二章 文獻探討 13 2.1 適地性社群網路 13 2.1.1 打卡行為與偏好分析 13 2.1.2 興趣點推薦系統 14 2.2 零售點決策因素 14 2.3 城市探勘 15 2.3.1 時-空間活動 16 2.3.2 人群行動 16 2.4 資料探勘與機器學習 17 2.4.1 密度估計方法 17 2.4.2 分群演算法 18 2.4.3 循序模式探勘探討 18 2.4.4 特徵評估方法 19 2.4.5 機器學習技術 20 第三章 零售點推薦因素模型與系統架構設計 21 3.1 興趣點推薦因素分析 21 3.2 以興趣點推薦為基之零售點推薦模型設計 23 3.2.1 零售點推薦因素與綜合比較 24 3.2.2 資料來源定義 25 3.2.3 零售點推薦因素模型介紹 26 3.3 系統設計 27 3.4 產業偏好過濾機制與候選區域選擇 29 3.4.1 產業偏好過濾機制 29 3.4.2 候選點選取 31 第四章 地域關係特徵萃取機制設計 32 4.1 密度分析 33 4.2 產業種類分析 36 4.3 產業群聚分析 37 4.4 產業飽和度分析 39 第五章 人群行動特徵萃取機制設計 40 5.1 行動特徵萃取前處理 40 5.2 連續循序模式探勘 44 5.3 循序模式探勘 47 第六章 機制實作與驗證 50 6.1 以FOURSQUARE資料集為基礎之特徵評估 50 6.2 FACEBOOK資料收集及特徵評估 61 6.2.1 Facebook打卡紀錄爬蟲系統配置 62 6.2.2 Facebook資料集分析及特徵評估 71 6.2.3 推薦實作 76 第七章 結論與未來方向 81 7.1 總結 81 7.2 研究限制 83 7.3 未來研究方向 83 參考文獻 86 附錄一 – FOURSQUARE資料集地點分類階層 89 附錄二 – FACEBOOK資料集地點分類階層 92 附錄三 – 以咖啡店為例之產業關聯性問卷 101

    Akalin, M., Turhan, G., & Sahin, A. (2016). The application of AHP approach for evaluating location selection elements for retail store: a case of clothing store. International Journal of Research in Business and Social Science (2147-4478), 2(4), 1-20.
    Bao, J., Zheng, Y., & Mokbel, M. F. (2012, November). Location-based and preference-aware recommendation using sparse geo-social networking data. In Proceedings of the 20th international conference on advances in geographic information systems (pp. 199-208). ACM.
    Blanke, U., Tröster, G., Franke, T., & Lukowicz, P. (2014, April). Capturing crowd dynamics at large scale events using participatory gps-localization. In Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP), 2014 IEEE Ninth International Conference on (pp. 1-7). IEEE.
    Breiman, L., Friedman, J., Stone, C. J., & Olshen, R. A. (1984). Classification and regression trees. CRC press.
    Burges, C., Shaked, T., Renshaw, E., Lazier, A., Deeds, M., Hamilton, N., & Hullender, G. (2005, August). Learning to rank using gradient descent. In Proceedings of the 22nd international conference on Machine learning (pp. 89-96). ACM.
    Chapelle, O., Metlzer, D., Zhang, Y., & Grinspan, P. (2009, November). Expected reciprocal rank for graded relevance. In Proceedings of the 18th ACM conference on Information and knowledge management (pp. 621-630). ACM.
    Chen, L. F., & Tsai, C. T. (2016). Data mining framework based on rough set theory to improve location selection decisions: A case study of a restaurant chain. Tourism Management, 53, 197-206.
    Chorley, M. J., Whitaker, R. M., & Allen, S. M. (2015). Personality and location-based social networks. Computers in Human Behavior, 46, 45-56.
    Cosley, D., Lam, S. K., Albert, I., Konstan, J. A., & Riedl, J. (2003, April). Is seeing believing?: how recommender system interfaces affect users' opinions. In Proceedings of the SIGCHI conference on Human factors in computing systems (pp. 585-592). ACM.
    Dhar, S., & Varshney, U. (2011). Challenges and business models for mobile location-based services and advertising. Communications of the ACM, 54(5), 121-128.
    Friedman, J., Hastie, T., & Tibshirani, R. (2001). The elements of statistical learning (Vol. 1, pp. 241-249). New York: Springer series in statistics.
    Fu, Y., Ge, Y., Zheng, Y., Yao, Z., Liu, Y., Xiong, H., & Yuan, J. (2014, December). Sparse real estate ranking with online user reviews and offline moving behaviors. In Data Mining (ICDM), 2014 IEEE International Conference on (pp. 120-129). IEEE.
    Fu, Y., Xiong, H., Ge, Y., Yao, Z., Zheng, Y., & Zhou, Z. H. (2014, August). Exploiting geographic dependencies for real estate appraisal: a mutual perspective of ranking and clustering. In Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 1047-1056). ACM.
    Ghosh, A., & Craig, C. S. (1983). Formulating retail location strategy in a changing environment. The Journal of Marketing, 56-68.
    Giannotti, F., Nanni, M., Pinelli, F., & Pedreschi, D. (2007, August). Trajectory pattern mining. In Proceedings of the 13th ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 330-339). ACM.
    Hernandez, T., & Bennison, D. (2000). The art and science of retail location decisions. International Journal of Retail & Distribution Management, 28(8), 357-367.
    Järvelin, K., & Kekäläinen, J. (2002). Cumulated gain-based evaluation of IR techniques. ACM Transactions on Information Systems (TOIS), 20(4), 422-446.
    Karamshuk, D., Noulas, A., Scellato, S., Nicosia, V., & Mascolo, C. (2013, August). Geo-spotting: mining online location-based services for optimal retail store placement. In Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 793-801). ACM.
    Li, Y. M., Chou, C. L., & Lin, L. F. (2014). A social recommender mechanism for location-based group commerce. Information Sciences, 274, 125-142.
    Liu, T. Y. (2009). Learning to rank for information retrieval. Foundations and Trends® in Information Retrieval, 3(3), 225-331.
    Nilsson, I. M., & Smirnov, O. A. (2016). Clustering vs. relative location: Measuring spatial interaction between retail outlets. Papers in Regional Science.
    Osterwalder, A., & Pigneur, Y. (2010). Business model generation: a handbook for visionaries, game changers, and challengers. John Wiley & Sons.
    O'Kelly, M. (2001). Retail market share and saturation. Journal of Retailing and Consumer Services, 8(1), 37-45.
    Roig-Tierno, N., Baviera-Puig, A., Buitrago-Vera, J., & Mas-Verdu, F. (2013). The retail site location decision process using GIS and the analytical hierarchy process. Applied Geography, 40, 191-198.
    Sanakulov, N., & Karjaluoto, H. (2015). Consumer adoption of mobile technologies: a literature review. International Journal of Mobile Communications, 13(3), 244-275.
    Scott, D. W. (2015). Multivariate density estimation: theory, practice, and visualization. John Wiley & Sons.
    Silverman, B. W. (1986). Density estimation for statistics and data analysis (Vol. 26). CRC press.
    Srikant, R., & Agrawal, R. (1996). Mining sequential patterns: Generalizations and performance improvements. Advances in Database Technology—EDBT'96, 1-17.
    Sun, Y., Wang, N., Shen, X. L., & Zhang, J. X. (2015). Location information disclosure in location-based social network services: Privacy calculus, benefit structure, and gender differences. Computers in Human Behavior, 52, 278-292.
    Wand, M. P., & Jones, M. C. (1994). Kernel smoothing. Crc Press.
    Wang, L., Gopal, R., Shankar, R., & Pancras, J. (2015). On the brink: Predicting business failure with mobile location-based checkins. Decision Support Systems, 76, 3-13.
    Wen, Y. T., Lei, P. R., Peng, W. C., & Zhou, X. F. (2014, December). Exploring social influence on location-based social networks. In 2014 IEEE International Conference on Data Mining (pp. 1043-1048). IEEE.
    Wei, L. Y., Zheng, Y., & Peng, W. C. (2012, August). Constructing popular routes from uncertain trajectories. In Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 195-203). ACM.
    Wikipedia, (2017a), CartoDB. Retrieved June 1, 2017, from https://en.wikipedia.org/wiki/CartoDB .
    Wikipedia, (2017b), Facebook. Retrieved May 25, 2017, from https://en.wikipedia.org/wiki/Facebook .
    Wikipedia, (2017c), Foursquare. Retrieved May 25, 2017, from https://en.wikipedia.org/wiki/Foursquare .
    Wikipedia, (2017d), Gowalla. Retrieved May 25, 2017, from https://en.wikipedia.org/wiki/Gowalla .
    Wikipedia, (2017e), Weka_(machine_learning). Retrieved May 26, 2017, from https://en.wikipedia.org/wiki/Weka_(machine_learning) .Wilson, M. W. (2012). Location-based services, conspicuous mobility, and the location-aware future. Geoforum, 43(6), 1266-1275.
    Yang, D., Zhang, D., Zheng, V. W., & Yu, Z. (2015). Modeling user activity preference by leveraging user spatial temporal characteristics in LBSNs. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 45(1), 129-142.
    Yang, D., Zhang, D., Chen, L., & Qu, B. (2015). NationTelescope: Monitoring and visualizing large-scale collective behavior in LBSNs. Journal of Network and Computer Applications, 55, 170-180.
    Ye, M., Yin, P., Lee, W. C., & Lee, D. L. (2011, July). Exploiting geographical influence for collaborative point-of-interest recommendation. In Proceedings of the 34th international ACM SIGIR conference on Research and development in Information Retrieval (pp. 325-334). ACM.
    Ying, J. J. C., Lu, E. H. C., Kuo, W. N., & Tseng, V. S. (2012, August). Urban point-of-interest recommendation by mining user check-in behaviors. In Proceedings of the ACM SIGKDD International Workshop on Urban Computing (pp. 63-70). ACM.
    Yuan, J., Zheng, Y., & Xie, X. (2012, August). Discovering regions of different functions in a city using human mobility and POIs. In Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 186-194). ACM.
    Zhang, J. D., Chow, C. Y., & Li, Y. (2014, November). LORE: exploiting sequential influence for location recommendations. In Proceedings of the 22nd ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems (pp. 103-112). ACM.
    Zhang, J. D., & Chow, C. Y. (2015). CoRe: Exploiting the personalized influence of two-dimensional geographic coordinates for location recommendations. Information Sciences, 293, 163-181.
    Zheng, Y., Capra, L., Wolfson, O., & Yang, H. (2014). Urban computing: concepts, methodologies, and applications. ACM Transactions on Intelligent Systems and Technology (TIST), 5(3), 38.
    Zheng, Y. & Xie, X. (2011). Location-Based Social Networks - Microsoft Research. Retrieved May 25, 2017, from http://research.microsoft.com/en-us/projects/lbsn/.

    591房屋交易。擷取於2017年8月21日自https://www.591.com.tw/。

    下載圖示 校內:2021-01-01公開
    校外:2021-01-01公開
    QR CODE