| 研究生: |
吳美玲 Wu, Mei-Ling |
|---|---|
| 論文名稱: |
列車班表之穩定化 Stabilizing a Train Timetable |
| 指導教授: |
李宇欣
Lee, Yu-Sin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 85 |
| 中文關鍵詞: | 列車班表 、穩定性 、線性規劃 、最佳化 |
| 外文關鍵詞: | railway timetable, stability, linear programming, optimization |
| 相關次數: | 點閱:83 下載:9 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
對於公告班表之鐵路系統而言,準點率為服務品質之重要指標。相較於增加或調整其他資源來提升準點率,調整班表乃是成本較低之方式。穩定之班表可盡量避免晚點在營運過程中擴散,而在班表內適當分配寬裕量乃是使班表穩定化較常用之方法。本研究使用線性規劃之數學方法,在不改變列車使用股道順序之條件下,反覆調整班表內之寬裕量分配,以使班表趨於穩定化,進而降低平均晚點量並達到改善鐵路運輸服務品質之目的。本研究使用三個測試例驗證並分析所發展之方法,驗證可應用於真實規模之班表穩定化,並且從寬裕量與晚點之分析結果,量化班表運轉效率與穩定度間之關係。此外並由資料與軟體工具兩方面探討本方法在實務應用上之課題。
For railway systems with published timetables, punctuality is an important service quality index. Timetable adjustment is often a realitively low-cost approach to improve punctuality, as compared with resource adjustment or other methods. Inserting appropriate supplement into the timetable decreases delay propagation, thus stabilizes the timetable. In this research we propose a linear programming model to re-distribute the supplements in a given timetable in a way that reduces the average delay. By repeating the process iteratively, the timetable can be stabilized. Three numerical examples demonstrate that the method can be applied to real-sized instances, and quantitatively revealed the relationship between timetable efficiency and stability. The thesis also discusses issues regarding application of this method in the real-world, including software and supporting data.
Assad, A. A. "Modelling of rail networks: Toward a routing/makeup model." Transportation Research Part B 14(1-2): 101-114. (1980).
Brännlund, U., P. O. Lindberg, et al. "Railway timetabling using Lagrangian relaxation." Transportation Science 32(4): 358-369. (1998).
Cacchiani, V. and P. Toth "Nominal and robust train timetabling problems." European Journal of Operational Research 219(3): 727-737. (2012).
Caprara, A., M. Fischetti, et al. "Modeling and solving the train timetabling problem." Operations Research 50(5): 851-861+916. (2002).
Caprara, A., M. Monaci, et al. "A Lagrangian heuristic algorithm for a real-world train timetabling problem." Discrete Applied Mathematics 154(5 SPEC. ISS.): 738-753. (2006).
Carey, M. and I. Crawford "Scheduling trains on a network of busy complex stations." Transportation Research Part B: Methodological 41(2): 159-178. (2007).
Corman, F., A. D'Ariano, et al. "Bi-objective conflict detection and resolution in railway traffic management." Transportation Research Part C: Emerging Technologies 20(1): 79-94. (2012).
D'Angelo, G., G. Di Stefano, et al. (2009). Evaluation of recoverable-robust timetables on tree networks. Hradec nad Moravici. 5874 LNCS: 24-35.
Delorme, X., X. Gandibleux, et al. "Stability evaluation of a railway timetable at station level." European Journal of Operational Research 195(3): 780-790. (2009).
Fischetti, M. and M. Monaci (2009). Light robustness. R. K. Ahuja, R. H. Mohring and C. D. Zaroliagis. 5868 LNCS: 61-84.
Fischetti, M., D. Salvagnin, et al. "Fast approaches to improve the robustness of a railway timetable." Transportation Science 43(3): 321-335. (2009).
Gatto, M. and P. Widmayer "On robust online scheduling algorithms." Journal of Scheduling 14(2): 141-156. (2011).
Goverde, R. M. P. "Railway timetable stability analysis using max-plus system theory." Transportation Research Part B: Methodological 41(2): 179-201. (2007).
Goverde, R. M. P. "A delay propagation algorithm for large-scale railway traffic networks." Transportation Research Part C: Emerging Technologies 18(3): 269-287. (2010).
Kroon, L., G. Maróti, et al. "Stochastic improvement of cyclic railway timetables." Transportation Research Part B: Methodological 42(6): 553-570. (2008).
Lee, Y. and C. Y. Chen "A heuristic for the train pathing and timetabling problem." Transportation Research Part B: Methodological 43(8-9): 837-851. (2009).
Liebchen, C., M. Lübbecke, et al. (2009). The concept of recoverable robustness, linear programming recovery, and railway applications. R. K. Ahuja, R. H. Mohring and C. D. Zaroliagis. 5868 LNCS: 1-27.
Schöbel, A. and A. Kratz (2009). A bicriteria approach for robust timetabling. R. K. Ahuja, R. H. Mohring and C. D. Zaroliagis. 5868 LNCS: 119-144.
Yang, C.-T., Y. Lee, et al. (2011). TrainWorld: A Decision Support System for Railway Timetabling. Taiwan International Conference on Railway Technology, Taipei.
Zhou, X. and M. Zhong "Single-track train timetabling with guaranteed optimality: Branch-and-bound algorithms with enhanced lower bounds." Transportation Research Part B: Methodological 41(3): 320-341. (2007).
交通部台灣鐵路管理局 行車實施要點 (2005).
交通部台灣鐵路管理局 臺灣鐵路管理局鐵路建設作業程序 (2009).
黃民仁 新世紀鐵路工程學. 文笙出版社. (2007).