簡易檢索 / 詳目顯示

研究生: 黃正達
Huang, Zheng-Da
論文名稱: 鎵金屬相關半導體之成長與光檢測器之應用
The Growth of Ga-related Semiconductors and their Application for photodetectors
指導教授: 張守進
Chang, Shoou-Jinn
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 85
中文關鍵詞: 氮化鎵氧化鎵光檢測器金奈米粒子
外文關鍵詞: GaN, Ga2O3, Photodetector, Au nanoparticle
相關次數: 點閱:103下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要著重在鎵系列半導體,包含氮化鎵、氧化鎵與氮化銦鎵
    之成長,並且研製和分析氮化鎵與氧化鎵系列紫外光檢測器。
    首先在在氧化鎵系列紫外光檢測器研製方面,我們使用爐管熱氧化的
    方法於氮化鎵磊晶薄膜上成長氧化鎵覆蓋層。藉由加入覆蓋層可以降低
    暗電流值達四個數量級、增加21 倍之紫外光與可見光的拒斥比。在5-V
    的偏壓下,具有氧化鎵覆蓋層及沒有氧化鎵覆蓋層的光檢測器之檢測度
    分別為1.01x1013 and 1.28x109 cmHz0.5W-1。
    在氮化鎵/氮化銦鎵量子井光檢測器研製方面,藉由加入氧化鎵覆蓋
    層可以降低暗電流值達兩個數量級在5 伏特的偏壓之下,這是由於有較
    厚及較高的能障所致。而暗電流值夠更進一步被減少及擁有90 倍之紫外
    光與可見光的拒斥比在成長氮化鎵/氮化銦鎵量子井結構之下,這是由於
    量子井能夠侷限被較低能量的光子所產生的電子電洞對所產生的結果,
    在5 伏特的偏壓之下,光檢測器之雜訊等效功率及檢測度分別為8.4×10-13
    W 與7.9×1012 cmHz0.5W-1。
    基於上述的結果,氮化鎵/氮化銦鎵量子井光檢測器被覆蓋了金奈米
    粒子以進一步地增加效能。在5 伏特的偏壓之下可以降低暗電流值達三
    個數量級,在1 伏特的偏壓之下擁有225 倍之(250/375 nm)拒斥比及5
    伏特的偏壓之下擁有3.9 倍之紫外光與可見光(375/430 nm)拒斥比在覆蓋
    了金奈米粒子之後。此外在波長500 奈米之處會有一個明顯的響應,這
    應該是金奈米粒子的表面電漿共振所產生的結果,這些結果顯示利用金
    奈米粒子將會有效地改善光電元件的效能。

    The main goals of this dissertation are the growth of GaN, Ga2O3
    and InGaN and the fabrication and analysis of photodetectors (PDs).
    First, we reported the growth of β-Ga2O3 cap layer by furnace
    oxidation of GaN epitaxial layer at high temperature in oxygen containing
    ambient to the fabrication of the GaN-based PDs. With the β–Ga2O3 cap
    layer inserted, it was found that we could reduced reverse leakage current
    by more 4 orders of magnitude and increased the UV-to-visible rejection
    ratio by 21 times. With a 5-V applied bias, the normalized detectivity
    were 1.01x1013 and 1.28x109 cmHz0.5W-1 for the PDs with and without
    the β–Ga2O3 cap, respectively.
    On the part of InGaN/GaN multi-quantum-well (MQW) PDs with a
    β–Ga2O3 cap layer, the reverse leakage current by at least about 2 orders
    of magnitude with a 5-V applied bias because it created a thicker and
    higher potential barrier with a beta-Ga2O3 cap layer. The reverse leakage current can be further reduced and a 90-fold larger ultraviolet-to-visible
    rejection ratio can be achieved by using InGaN/GaN MQW layers, which
    confine the electron-hole pairs generated by lower-energy photons. In
    addition, the noise level was reduced and detectivity was increased.
    With a 5-V applied bias, the noise equivalent power and normalized
    detectivity were 8.4×10-13 W and 7.9×1012 cmHz0.5W-1, respectively.
    Based on the aforementioned, the InGaN/GaN multi-quantum-well
    (MQW) PDs were covered with Au nanoparticles to increase performance.
    The reverse leakage current decreased by more than 3 orders of
    magnitude with a 5-V applied bias, a 225-fold increase of the rejection
    ratio (250/3385 nm) was achieved with a 1-V applied bias and a 3.9-fold
    enhancement in rejection ratio (375/430 nm) with a 1-V applied bias
    could be achieved after the PDs were covered with Au nanoparticles.
    There was an obvious response at 500 nm due to the surface plasmon
    resonance in Au nanoparticles. The results indicate that Au nanoparticles
    can be used to improve the performance of optoelectronic devices.

    Abstract (In Chinese) ..............................................................................I Abstract..................................................................................................III Acknowledgement………………………………………...………….. VI Contents .................................................................................................VI Figure Captions..................................................................................VIII Table Captions........................................................................................ X Chapter 1 Introduction .......................................................................... 1 1.1 Background and Motivation ............................................................. 1 1.1-1 The background of GaN-based semiconductors and devices................. 1 1.1-2 The background of Ga2O3-related semiconductors and devices............ 2 1.1-3 Ultraviolet photodetectors ......................................................................... 3 1.1-4 Metal nanoparticles.................................................................................... 5 1.2 Organization of Dissertation ............................................................. 6 Chapter 2 Theory and Experimental Apparatus................................11 2.1 The Theory of Photodetectors ......................................................... 11 2.2 Experimental Apparatus..................................................................13 2.2-1 Field-Emission Scanning Electron Microscope (FESEM).................... 13 2.2-2 Electron Dispersive X-ray Spectroscopy................................................ 13 2.2-3 X-Ray Diffraction Analysis...................................................................... 14 2.2-4 Measurement Systems.............................................................................. 14 Chapter 3 GaN Schottky barrier photodetectors with a beta-Ga2O3 cap layer................................................................................................. 20 3.1 Introduction….………………………………………………........20 3.2 Experiment……………...…………………………………………21 3.3 Results and discussion…….……………………………………....22 3.4 Summary…………...……………………………………………...26 Chapter 4 InGaN/GaN Multi-Quantum-Well Metal-Semiconductor- Metal Photodetectors With Beta-Ga2O3 Cap Layers ........................ 33 4.1 Introduction….………………………………………………........33 4.2 Experiment……………...…………………………………………34 4.3 Results and discussion…….……………………………………....36 4.4 Summary…………...……………………………………………...39 Chapter 5 Photodetectors covered with Au nanoparticles ............... 46 5-1 Ga2O3/GaN-based photodetectors covered with Au nanoparticles ..................................................................................................................46 5.1.1 Introduction…..……………………………………………….……........46 5.1.2 Experiment….………...…………………………………………………47 5.1.3 Results and discussion…..…………………………………….................48 5.1.4 Summary….……...……………………………………………………...51 5-2 Ga2O3/Ga/InGaN-based Photodetectors covered with Au nanoparticles...........................................................................................52 5.2.1 Introduction..………………………………………………….……........52 5.2.2 Experiment….………...…………………………………………………53 5.2.3 Results and discussion.….…………………………………….................54 5.2.4 Summary.………...……………………………………………………...58 Chapter 6 Conclusions and Future Works......................................... 70 6.1 Conclusions .......................................................................................70 6.2 Future work……………………………………………………….. 73 Reference ............................................................................................... 74 Reference in chapter 1............................................................................74 Reference in chapter 3............................................................................76 Reference in chapter 4............................................................................78 Reference in chapter 5............................................................................80

    Reference in chapter 1
    [1] J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager, E. E. Haller, Hai Lu, William J. Schaff, Yoshiki Saito, and Yasushi Nanishi, “Unusual properties of the fundamental band gap of InN,” Appl. Phys. Lett., vol. 80, pp. 3967-3969, 2002.
    [2] J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager, E. E. Haller, Hai Lu, and William J. Schaff, “Small band gap bowing in In1−xGaxN alloys,” Appl. Phys. Lett., vol. 80, pp. 4741-4743, 2002.
    [3] Nakamura S, Senoh M, Iwasa N, Nagahama SC. “High-power InGaN singlequantum-well-structure blue and violet light-emitting diodes,” Appl. Phys. Lett., vol. 67, pp. 1868-1870, 1995.
    [4] Nakamura S, Senoh M, Nagahama S, Iwasa N, Yamada T, Matsushita T, et al. “High-power Long-lifetime InGaN multi-quantum-well structure laser diodes,” Jpn J Appl Phys, vol. 36, pp. L1059–1061, 1997.
    [5] Walker D, Monroy E, Kung P, Wu J, Hamilton M, Sanchez FJ, et al. “High-speed, low-noise metal–semiconductor–metal ultraviolet photodetectors based on GaN,” Appl. Phys. Lett., vol. 74, pp. 762–764, 1999.
    [6] Mazzeo G, Reverchon JL, Duboz JY, Dussaigne A. “AlGaN-based linear array for UV solar-blind imaging from 240 to 280 nm,” IEEE Sens J, vol. 6, pp. 957–963, 2006.
    [7] Saito W, Nitta T, Kakiuchi Y, Saito Y, Tsuda K, Omura I, et al. “A 120-W boost converter operation using a high-voltage GaN-HEMT,” IEEE Electron Dev Lett., vol. 29, pp. 8–10, 2008.
    [8] Hongtao X, Gao S, Heikman S, Long SI, Mishra UK, York RA. “A high-efficiency class-E GaN HEMT power amplifier at 1.9 GHz,” IEEE Microw Wirel Compon Lett., vol. 16, pp. 22–24, 2006.
    [9] S. Geller, “Crystal Structure of β-Ga2O3,” J. Chem. Phys., vol. 33, pp. 676-684, 1960.
    [10] R. ROY, V. G. HILL and E. F. Osbron, “Polymorphism of Ga2O3 and the System Ga2O3-H2O,” Journal of the American Ceramic Society, Vol. 74, pp. 719-722, 1952.
    [11] D. Gourier, L. Binet and E. Aubay, “Magnetic bistability and memory of conduction electrons released from oxygen vacancies in gallium oxide”, Radiation Effects and Defects in Solids, Vol. 134, pp. 223-228, 1995.
    [12] T. Minami, “Oxide thin-film electroluminescent devices and materials,” Solid State Electron., vol. 47, pp, 2237-2243, 2003.
    [13] T. Minami, “Transparent and conductive multicomponent oxide films prepared by magnetron sputtering,” J. Vac. Sci. Technol., vol. 17, pp, 1765-1772, 1999.
    75
    [14] K. Matsuzaki, H. Yanagi, T. Kamiya, H. Hiramatsu, K. Nomura, M. Hirano and H. Hosono, “Field-induced current modulation in epitaxial film of deep-ultraviolet transparent oxide semiconductor Ga2O3,” Appl. Phys. Lett., vol. 88, Art. no. 092106, 2006.
    [15] M. R. Lorenz, J. F. Woods and R. J. Gambino, “Some electrical properties of the semiconductor β-Ga2O3,” J. Phys. Chem. Solids, vol. 28, pp. 403-404, 1967.
    [16] E. Monroy, E. Muñoz, F. J. Sánchez, F. Calle, E. Calleja, B. Beaumout, P. Gibart, J. A. Muñoz and F. Cussó, “High-performance GaN p-n junction photodetectors for solar ultraviolet applications,” Semicond. Sci. Technol., vol. 13, pp. 1042-1046, 1998.
    [17] G. Parish, S. Keller, P. Kozodoy, J. A. Ibbetson, H. Marchand, P. T. Fini, S. B. Fleischer, S. P. DenBaars and U. K. Mishra, “High-performance (Al,Ga)N-based solar-blind ultraviolet p-i-n detectors on laterally epitaxially overgrown GaN, ” Appl. Phys. Lett., vol. 75, pp. 247-249, 1999.
    [18] Q. Chen, J. W. Yang, A. Osinsky, S. Gangopadhyay, B. Lim, M. Z. Anwar, M. Asif Khan, D. Kuksenkov and H. Temkin, “Schottky barrier detectors on GaN for visible-blind ultraviolet detection, ” Appl. Phys. Lett., vol. 70, pp. 2277-2279, 1997.
    [19] Z. M. Zhao, R. L. Jiang, P. Chen, D. J. Xi, Z. Y. Luo, R. Zhang, B. Shen, Z. Z. Chen and Y. D. Zheng, “Metal-semiconductor-metal GaN ultraviolet photodetectors on Si(111),” Appl. Phys. Lett., vol. 77, pp. 444-446, 2000.
    [20] T. Mukai, K. Takekawa, and S. Nakamura, “InGaN-based blue light-emitting diodes grown on epitaxially laterally overgrown GaN substrates,” Jpn. J. Appl. Phys., vol. 37, pp. L839–L841, 1998.
    [21] A. Usui, H. Sunakawa, A. Sakai, and A. A. Yamaguchi, “Thick GaN epitaxial growth with low dislocation density by hydride vapor phase epitaxy,” Jpn. J. Appl. Phys., vol. 36, pp. L899–L902, 1997.
    [22] K. Matsuzaki, H. Hiramatsu, K. Nomura, H.Yanagi, T. Kamiya, M. Hirano, and H. Hosono, “Growth, structure and carrier transport properties of Ga2O3 epitaxial film examined for transparent field-effect transistor,” Thin Solid Films, vol. 496, pp. 37–41, Feb. 2006.
    [23] C. L. Dezelah, IV, J. Niinisto, K. Arstila, L. Niinisto, and C. H.Winter, “Atomic layer deposition of Ga2O3 films from a dialkylamido-based precursor,” Chem. Mater., vol. 18, pp. 471–475, Jan. 2006.
    [24] H. W. Kim and N. H. Kim, “Growth of gallium oxide thin films on silicon by the metal organic chemical vapor deposition method,” Mater. Sci. Eng. B, vol. 110, pp. 34–37, Jun. 2004.
    [25] Y. Li, A. Trinchi, W. Wlodarski, K. Galatsis, and K. Kalantar-zadeh, “Investigation of the oxygen gas sensing performance of Ga2O3 thin films with different dopants,” Sens.
    76
    Actuators B, vol. 93, pp. 431–434, Aug. 2003.
    [26] A. C. Lang, M. Fleischer, and H. Meixner, “Surface modification of Ga2O3 thin film sensors with Rh, Ru and Ir clusters,” Sens. Actuators B, vol. 66, pp. 80–84, Jul. 2000.
    [27] H. A. Atwater, and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater., vol. 9, pp. 205-213, Mar. 2010.
    [28] M. D. Yang, Y. K. Liu, J. L. Shen, C. H. Wu, C. A. Lin, W. H. Chang, H. H. Wang, H. I. Yeh, W. H. Chan, and W. J. Parak, “Improvement of conversion efficiency for multi-junction solar cells by incorporation of Au nanoclusters,” Opt. Express, vol. 16, pp. 15754–15758, Sep. 2008.
    [29] D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett., vol. 86, 063106, Feb. 2005.
    [30] C. H. Lin, T. T. Chen, and Y. F. Chen, “Photocurrent enhancement of SnO2 nanowires through Au-nanoparticles decoration,” Opt. Express, vol. 16, pp. 16916–16922, Oct. 2008.
    [31] K. Liu, M. Sakurai, M. Liao, and M. Aono, “Giant Improvement of the Performance of ZnO Nanowire Photodetectors by Au Nanoparticles,” J. Phys. Chem. C, vol. 114, pp. 19835–19839, Nov. 2010.
    [32] Y. J. Wu, C. H. Hsieh, P. H. Chen, J. Y. Li, L. J. Chou, and L. J. Chen, “Plasmon Resonance Spectroscopy of Gold-in-Gallium Oxide Peapod and Core/Shell Nanowires,” ACS NANO, vol.4, pp.1393-1398, Mar. 2010.
    [33] S. Link and M. A. El-Sayed, “Spectral Properties and Relaxation Dynamics of Surface Plasmon Electronic Oscillations in Gold and Silver Nanodots and Nanorods,” J. Phys. Chem. B vol. 103, pp. 8410-8426, 1999.
    Reference in chapter 3
    [1] E. Monroy, E. Muñoz, F. J. Sánchez, F. Calle, E. Calleja, B. Beaumout, P. Gibart, J. A. Muñoz and F. Cussó, “High-performance GaN p-n junction photodetectors for solar ultraviolet applications”, Semicond. Sci. Technol., vol. 13, pp. 1042-1046, 1998.
    [2] G. Parish, S. Keller, P. Kozodoy, J. A. Ibbetson, H. Marchand, P. T. Fini, S. B. Fleischer, S. P. DenBaars and U. K. Mishra, “High-performance (Al,Ga)N-based solar-blind ultraviolet p-i-n detectors on laterally epitaxially overgrown GaN”, Appl. Phys. Lett., vol. 75, pp. 247-249, 1999.
    [3] Q. Chen, J. W. Yang, A. Osinsky, S. Gangopadhyay, B. Lim, M. Z. Anwar, M. Asif Khan, D. Kuksenkov and H. Temkin, “Schottky barrier detectors on GaN for visible-blind ultraviolet detection”, Appl. Phys. Lett., vol. 70, pp. 2277-2279, 1997.
    77
    [4] Z. M. Zhao, R. L. Jiang, P. Chen, D. J. Xi, Z. Y. Luo, R. Zhang, B. Shen, Z. Z. Chen and Y. D. Zheng, “Metal-semiconductor-metal GaN ultraviolet photodetectors on Si(111)”, Appl. Phys. Lett., vol. 77, pp. 444-446, 2000.
    [5] M. Razeghi and A. Rogalski, “Semiconductor ultraviolet detectors,” J. Appl. Phys., vol. 79, 7433,1996.
    [6] T. Hino, S. Tomiya, T. Miyajima, K. Yanashima, S. Hashimoto, and M. Ikeda, “Characterization of threading dislocations in GaN epitaxial layers,” Appl. Phys. Lett., vol. 76, pp. 3421-3423, 2000.
    [7] Y. Xin, E. M. James, I. Arslan, S. Sivananthan, N. D. Browning, S. J. Pennycook, F. Omnes, B. Beaumont, J.-P. Faurie, and P. Gibart, “Direct experimental observation of the local electronic structure at threading dislocations in metalorganic vapor phase epitaxy grown wurtzite GaN thin films,” Appl. Phys. Lett., vol. 76 pp. 466-468, 2000.
    [8] S. J. Chang, S. M. Wang, P. C. Chang, C. H. Kuo, S. J. Young, T. P. Chen, S. L. Wu and B. R. Huang, "GaN Schottky barrier photodetectors", IEEE Sensors Journal, vol. 10, pp. 1609-1614, 2010.
    [9] H. C. Casey, G. G. Fountain, R. G. Alley, B. P. Keller, and S. P. DenBaars, “Low interface trap density for remote plasma deposited SiO2 on n-type GaN,” Appl. Phys. Lett., vol. 68, pp. 1850-1852, Mar. 1996.
    [10] L. W. Tu, W. C. Kuo, K. H. Lee, P. H. Tsao, C. M. Lai, A. K. Chu, and J. K. Sheu, “High-dielectric-constant Ta2O5/n-GaN metal-oxide-semiconductor structure,” Appl. Phys. Lett., vol. 77, pp. 3788-3790, Dec. 2000.
    [11] C. T. Lee, H. W. Chen, and H. Y. Lee, “Metal-oxide-semiconductor devices using Ga2O3 dielectrics on n-type GaN,” Appl. Phys. Lett., vol. 82, pp. 4304-4306. Jun. 2003.
    [12] C. X. Wang, N. Maeda, M. Hiroki, T. Kobayashi, and T. Enoki, Jpn. J. “High temperature characteristics of insulated-gate AlGaN/GaN heterostructure field-effect transistors with ultrathin Al2O3/Si3N4 bilayer,” Appl. Phys., Part 1, vol. 44, pp. 7889-7891, Nov. 2005.
    [13] K. Matsuzaki, H. Hiramatsu, K. Nomura, H.Yanagi, T. Kamiya, M. Hirano, and H. Hosono, “Growth, structure and carrier transport properties of Ga2O3 epitaxial film examined for transparent field-effect transistor,” Thin Solid Films, vol. 496, pp. 37–41, 2006.
    [14] C. L. Dezelah, IV, J. Niinisto, K. Arstila, L. Niinisto, and C. H.Winter, “Atomic layer deposition of Ga2O3 films from a dialkylamido-based precursor,” Chem. Mater., vol. 18, pp. 471–475, 2006.
    [15] H. W. Kim and N. H. Kim, “Growth of gallium oxide thin films on silicon by the metal organic chemical vapor deposition method,” Mater. Sci. Eng. B, vol. 110, pp. 34–37, 2004.
    [16] Y. Li, A. Trinchi, W. Wlodarski, K. Galatsis, and K. Kalantar-zadeh, “Investigation of the oxygen gas sensing performance of Ga2O3 thin films with different dopants,” Sens. Actuators B, vol. 93, pp. 431–434, 2003.
    [17] C. T. Lee, H. W. Chen, F. T. Hwang, and H. Y. Lee, “Investigation of Ga oxide films
    78
    directly grown on n-type GaN by photoelectrochemical oxidation using He-Cd laser,” J. Electron. Mater., vol. 34, pp. 282–286, 2005.
    [18] A. C. Lang, M. Fleischer, and H. Meixner, “Surface modification of Ga2O3 thin film sensors with Rh, Ru and Ir clusters,” Sens. Actuators B, vol. 66, pp. 80–84, 2000.
    [19] E. Muñoz, E. Monroy, J. A. Garrido, I. Izpura, F. J. Sánchez, M. A. Sánchez-García, E. Calleja, B. Beaumont and P. Gibart, “Photoconductor gain mechanisms in GaN ultraviolet detectors”, IEEE J. Sel. Top. Quantum Electron., vol. 71, pp. 870-872, 1997.
    [20] J. C. Carrano, T. Li, P. A. Grudowski, C. J. Eiting, R. D. Dupuis, and J. C. Campbell, “Comprehensive characterization of metal-semiconductor-metal ultraviolet photodetectors fabricated on single-crystal GaN,” J. Appl. Phys., vol. 83, pp. 6148–6260, 1998.
    [21] C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, “ZnO nanowire UV photodetectors with high internal gain,” Nano Lett., vol. 7, pp. 1003–1009, 2007.
    [22] C. H. Lin, R. S. Chen, T. T. Chen, H. Y. Chen, Y. F. Chen, K. H. Chen, and L. C. Chen, “High photocurrent gain in SnO nanowires,” Appl. Phys. Lett., vol. 93, 2008, Article 112115.
    [23] P. Feng, X. Y. Xue, Y. G. Liu, Q. Wan, and T. H. Wang, “Achieving fast oxygen response in individual β–Ga2O3 nanowires by ultraviolet illumination,” Appl. Phys. Lett., vol. 89, 2006, Article 112114.
    [24] S. Wang, T. Li, J. M. Reifsnider, B. Yang, C. Collins, A. L. Holmes, Jr. and J. C. Campbell, “Schottky metal-semiconductor-metal photodetectors on GaN films grown on sapphire by molecular beam epitaxy”, IEEE J. Quan. Electron., vol. 36, pp. 1262-1266, 2000.
    Reference in chapter 4
    [1] E. Munoz, E. Monroy, J. L. Pau, F. Calle, F. Omnes, and P. Gibart, “III nitrides and UV detection,” J. Phys. Condens. Matter, vol. 13, pp. 7115–7137, Jul. 2001.
    [2] J. C. Roberts, C. A. Parker, J. F.Muth, S. F. Leboeuf, M. E. Aumer, S.M. Bedair, and M. J. Reed, “Ultraviolet-visible metal-semiconductor-metal photodetectors fabricated from InxGa1-xN (0 <= x <= 0.13),” J. Electron. Mater., vol. 31, no. 1, pp. 94–99, Jan. 2002.
    [3] Y. T. Moon, D. J. Kim, K. M. Song, C. J. Choi, S. H. Han, T. Y. Seong, and S. J. Park,
    79
    “Effects of thermal and hydrogen treatment on indium segregation in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett., vol. 89, no. 11, pp. 6514–6518, Jun. 2001.
    [4] A. Dussaigne, B. Damilano, N. Grandjean, and J. Massies, “In surface segregation in InGaN/GaN quantum wells,” J. Cryst. Growth, vol. 251, pp. 471–475, Apr. 2003.
    [5] M. J. Galtrey, R. A. Oliver, M. J. Kappers, C. J. Humphreys, D. J. Stokes, P. H. Clifton, and A. Cerezo, “3-D atom probe studies of an InxGa1−xN/GaN multiple quantum well structure: Assessment of possible indium clustering,” Appl. Phys. Lett., vol. 90, no. 6, pp. 061903- 1–061903-3, Feb. 2007.
    [6] C. Rivera, J. L. Pau, F. B. Naranjo, and E. Munoz, “Novel photodetectors based on InGaN/GaN multiple quantum wells,” Phys. Stat. Sol. (a), vol. 201, pp. 2658–2662, Sep. 2004.
    [7] C. Rivera, J. L. Pau, J. Pereiro, and E. Munoz, “Properties of schottky barrier photodiodes based on InGaN–GaN MQW structures,” Superlattices Microstruct., vol. 36, pp. 849–857, Oct. 2004.
    [8] C. Rivera, J. L. Pau, A. Navarro, and E. Munoz, “Photoresponse of (In,Ga)N–GaN multiple-quantum-well structures in the visible and UVA ranges,” IEEE J. Quantum Electron., vol. 42, no. 1, pp. 51–58, Jan. 2006.
    [9] E. Monroy, E. Munoz, F. J. Sanchez, F. Calley, E. Calleja, B. Beaumont, P. Gibart, J. A. Munoz, F. Cusso, “High-performance GaN p-n junction photodetectors for solar ultraviolet applications,” Semicond. Sci. Technol., vol. 13, pp. 1042-1046, Sep. 1998.
    [10] N. Biyikli, I. Kimukin, O. Aytur, E. Ozbay, “Solar-blind AlGaN-based p-i-n photodiodes with low dark current and high detectivity,” IEEE Photon. Technol. Lett., vol.16, pp. 1718-1720, Jul. 2004.
    [11] O. Katz, V. Garber, B. Meyler, G. Bahir, J. Salzman, “Anisotropy in detectivity of GaN Schottky ultraviolet detectors: Comparing lateral and vertical geometry,” Appl. Phys. Lett. vol. 80, pp. 347-349, Jan. 2002.
    [12] J. Lia, Y. Xu, T.Y. Hsiang, W.R. Donaldson, “Picosecond response of gallium-nitride metal-semiconductor-metal photodetectors,” Appl. Phys. Lett., vol. 84, pp. 2091-2093, Mar. 2004.
    [13] H. C. Casey, G. G. Fountain, R. G. Alley, B. P. Keller, and S. P. DenBaars, “Low interface trap density for remote plasma deposited SiO2 on n-type GaN,” Appl. Phys. Lett., vol. 68, pp. 1850-1852, Mar. 1996.
    [14] L. W. Tu, W. C. Kuo, K. H. Lee, P. H. Tsao, C. M. Lai, A. K. Chu, and J. K. Sheu, “High-dielectric-constant Ta2O5/n-GaN metal-oxide-semiconductor structure,” Appl. Phys. Lett., vol. 77, pp. 3788-3790, Dec. 2000.
    [15] C. T. Lee, H. W. Chen, and H. Y. Lee, “Metal-oxide-semiconductor devices using Ga2O3 dielectrics on n-type GaN,” Appl. Phys. Lett., vol. 82, pp. 4304-4306. Jun.
    80
    2003.
    [16] C. X. Wang, N. Maeda, M. Hiroki, T. Kobayashi, and T. Enoki, Jpn. J. “High temperature characteristics of insulated-gate AlGaN/GaN heterostructure field-effect transistors with ultrathin Al2O3/Si3N4 bilayer,” Appl. Phys., Part 1, vol. 44, pp. 7889-7891, Nov. 2005.
    [17] K. Matsuzaki, H. Hiramatsu, K. Nomura, H.Yanagi, T. Kamiya, M. Hirano, and H. Hosono, “Growth, structure and carrier transport properties of Ga2O3 epitaxial film examined for transparent field-effect transistor,” Thin Solid Films, vol. 496, pp. 37–41, Feb. 2006.
    [18] C. L. Dezelah, IV, J. Niinisto, K. Arstila, L. Niinisto, and C. H.Winter, “Atomic layer deposition of Ga2O3 films from a dialkylamido-based precursor,” Chem. Mater., vol. 18, pp. 471–475, Jan. 2006.
    [19] H. W. Kim and N. H. Kim, “Growth of gallium oxide thin films on silicon by the metal organic chemical vapor deposition method,” Mater. Sci. Eng. B, vol. 110, pp. 34–37, Jun. 2004.
    [20] Y. Li, A. Trinchi, W. Wlodarski, K. Galatsis, and K. Kalantar-zadeh, “Investigation of the oxygen gas sensing performance of Ga2O3 thin films with different dopants,” Sens. Actuators B, vol. 93, pp. 431–434, Aug. 2003.
    [21] A. C. Lang, M. Fleischer, and H. Meixner, “Surface modification of Ga2O3 thin film sensors with Rh, Ru and Ir clusters,” Sens. Actuators B, vol. 66, pp. 80–84, Jul. 2000.
    [22] W. Y. Weng, T. J. Hsueh, S. J. Chang, G. J. Huang, and S. P. Chang, “A Solar-Blind β–Ga2O3 Nanowire Photodetector,”IEEE Photon. Technol. Lett., vol. 22, no. 10, pp. 709-711, May, 2010.
    [23] K. H. Lee, P. C. Chang, S. J. Chang, and S. L. Wu, “InGaN Metal-Semiconductor-Metal Photodetectors with Aluminum Nitride Cap Layers,”IEEE J. Quan. Electron., vol. 47, no. 8, pp. 1107-1112, Aug. 2011.
    [24] R. R. Pelá, C. Caetano, M. Marques, L. G. Ferreira, J. Furthmüller, and L. K. Teles, “Accurate band gaps of AlGaN, InGaN, and AlInN alloys calculations based on LDA-1/2 approach,” Appl. Phys. Lett. vol. 98, pp. 151907-1-151907-3, Apr. 2011.
    [25] S. M. Sze, Physics of Semiconductor Devices, 2nd ed. New York: Wiley, 1981.
    Reference in chapter 5
    5-1
    [1] S. J. Chang, K. H. Lee, P. C. Chang, Y. C. Wang, C. H. Kuo, and S. L. Wu, “AlGaN/GaN Schottky Barrier Photodetector With Multi-MgxNy/GaN Buffer,” IEEE Sens. J., vol. 9, pp. 87-92, 2009.
    [2] T. Tut, T. Yelboga, E. Ulker, and E. Ozbay, “Solar-blind AlGaN-based p-i-n
    81
    photodetectors with high breakdown voltage and detectivity,” Appl. Phys. Lett., vol. 92, 103502, 2008.
    [3] H. Jiang and T. Egawa, “High quality AlGaN solar-blind Schottky photodiodes fabricated on AlN/sapphire template,” Appl. Phys. Lett., vol. 92, 121121, 2007.
    [4] E. Monroy, E. Muñoz, F. J. Sánchez, F. Calle, E. Calleja, B. Beaumout, P. Gibart, J. A. Muñoz and F. Cussó, “High-performance GaN p-n junction photodetectors for solar ultraviolet applications,” Semicond. Sci. Technol., vol. 13, pp. 1042-1046, Sep. 1999.
    [5] G. Parish, S. Keller, P. Kozodoy, J. A. Ibbetson, H. Marchand, P. T. Fini, S. B. Fleischer, S. P. DenBaars and U. K. Mishra, “High-performance (Al,Ga)N-based solar-blind ultraviolet p-i-n detectors on laterally epitaxially overgrown GaN”, Appl. Phys. Lett., Vol. 75, pp. 247-249, 1999.
    [6] Q. Chen, J. W. Yang, A. Osinsky, S. Gangopadhyay, B. Lim, M. Z. Anwar, M. Asif Khan, D. Kuksenkov and H. Temkin, “Schottky barrier detectors on GaN for visible-blind ultraviolet detection”, Appl. Phys. Lett., Vol. 70, pp. 2277-2279, 1997.
    [7] Z. M. Zhao, R. L. Jiang, P. Chen, D. J. Xi, Z. Y. Luo, R. Zhang, B. Shen, Z. Z. Chen and Y. D. Zheng, “Metal-semiconductor-metal GaN ultraviolet photodetectors on Si(111)”, Appl. Phys. Lett., Vol. 77, pp. 444-446, 2000.
    [8] T. Hino, S. Tomiya, T. Miyajima, K. Yanashima, S. Hashimoto, and M. Ikeda, “Characterization of threading dislocations in GaN epitaxial layers,” Appl. Phys. Lett., vol. 76, pp. 3421-3423, Jun. 2000.
    [9] Y. Xin, E. M. James, I. Arslan, S. Sivananthan, N. D. Browning, S. J. Pennycook, F. Omnes, B. Beaumont, J.-P. Faurie, and P. Gibart, “Direct experimental observation of the local electronic structure at threading dislocations in metalorganic vapor phase epitaxy grown wurtzite GaN thin films,” Appl. Phys. Lett., vol. 76, pp. 466-468. Jan. 2000.
    [10] H. C. Casey, Jr., G. G. Fountain, R. G. Alley, B. P. Keller, and S. P. DenBaars, “Low interface trap density for remote plasma deposited SiO2 on n-type GaN,” Appl. Phys. Lett., vol. 68, pp. 1850-1852, Mar. 1996.
    [11] L. W. Tu, W. C. Kuo, K. H. Lee, P. H. Tsao, C. M. Lai, A. K. Chu, and J. K. Sheu, “High dielectric constant Ta2O5/n-GaN metal oxide semiconductor structure,” Appl. Phys. Lett., vol. 77, pp. 3788-3790, Dec. 2000.
    [12] C. T. Lee, H. W. Chen, and H. Y. Lee, “Metal-oxide-semiconductor devices using Ga2O3 dielectrics on n-type GaN,” Appl. Phys. Lett., vol. 82, pp. 4304-4306. Jun. 2003.
    [13] C. X. Wang, N. Maeda, M. Hiroki, T. Kobayashi, and T. Enoki, Jpn. J. “High temperature characteristics of insulated-gate AlGaN/GaN heterostructure field-effect transistors with ultrathin Al2O3/Si3N4 bilayer,” Appl. Phys., Part 1, vol. 44, pp.
    82
    7889-7891, Nov. 2005.
    [14] W. Y. Weng, T. J. Hsueh, S. J. Chang, G. J. Huang, and S. P. Chang, “A Solar-Blind β–Ga2O3 Nanowire Photodetector,”IEEE Photon. Technol. Lett., vol. 22, no. 10, pp. 709-711, May, 2010.
    [15] H. A. Atwater, and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater., vol. 9, pp. 205-213, Mar. 2010.
    [16] M. D. Yang, Y. K. Liu, J. L. Shen, C. H. Wu, C. A. Lin, W. H. Chang, H. H. Wang, H. I. Yeh, W. H. Chan, and W. J. Parak, “Improvement of conversion efficiency for multi-junction solar cells by incorporation of Au nanoclusters,” Opt. Express, vol. 16, pp. 15754–15758, Sep. 2008.
    [17] D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett., vol. 86, 063106, Feb. 2005.
    [18] C. H. Lin, T. T. Chen, and Y. F. Chen, “Photocurrent enhancement of SnO2 nanowires through Au-nanoparticles decoration,” Opt. Express, vol. 16, pp. 16916–16922, Oct. 2008.
    [19] K. Liu, M. Sakurai, M. Liao, and M. Aono, “Giant Improvement of the Performance of ZnO Nanowire Photodetectors by Au Nanoparticles,” J. Phys. Chem. C, vol. 114, pp. 19835–19839, Nov. 2010.
    [20] P. Feng, X. Y. Xue, Y. G. Liu, Q. Wan, and T. H. Wang, “Achieving fast oxygen response in individual beta-Ga2O3 nanowires by ultraviolet illumination,” Appl. Phys. Lett., vol. 89, 112114, Sep. 2006.
    [21] S. L. Westcott, S. J. Oldenburg, T. R. Lee, and N. J. Halas, “Construction of simple gold nanoparticle aggregates with controlled plasmon-plasmon interactions,” Chemical Physics Letters, vol. 300, pp. 651–655, Feb. 1999.
    [22] Y. J. Wu, C. H. Hsieh, P. H. Chen, J. Y. Li, L. J. Chou, and L. J. Chen, “Plasmon Resonance Spectroscopy of Gold-in-Gallium Oxide Peapod and Core/Shell Nanowires,” ACS NANO, vol.4, pp.1393-1398, Mar. 2010.
    5-2
    [1] E. Munoz, E. Monroy, J. L. Pau, F. Calle, F. Omnes, and P. Gibart, “III nitrides and UV detection,” J. Phys. Condens. Matter, vol. 13, pp. 7115–7137, Jul. 2001.
    [2] J. C. Roberts, C. A. Parker, J. F.Muth, S. F. Leboeuf, M. E. Aumer, S.M. Bedair, and M. J. Reed, “Ultraviolet-visible metal-semiconductor-metal photodetectors fabricated from InxGa1-xN (0 <= x <= 0.13),” J. Electron. Mater., vol. 31, no. 1, pp. 94–99, Jan. 2002.
    [3] Y. T. Moon, D. J. Kim, K. M. Song, C. J. Choi, S. H. Han, T. Y. Seong, and S. J. Park,
    83
    “Effects of thermal and hydrogen treatment on indium segregation in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett., vol. 89, no. 11, pp. 6514–6518, Jun. 2001.
    [4] A. Dussaigne, B. Damilano, N. Grandjean, and J. Massies, “In surface segregation in InGaN/GaN quantum wells,” J. Cryst. Growth, vol. 251, pp. 471–475, Apr. 2003.
    [5] M. J. Galtrey, R. A. Oliver, M. J. Kappers, C. J. Humphreys, D. J. Stokes, P. H. Clifton, and A. Cerezo, “3-D atom probe studies of an InxGa1−xN/GaN multiple quantum well structure: Assessment of possible indium clustering,” Appl. Phys. Lett., vol. 90, no. 6, pp. 061903- 1–061903-3, Feb. 2007.
    [6] C. Rivera, J. L. Pau, F. B. Naranjo, and E. Munoz, “Novel photodetectors based on InGaN/GaN multiple quantum wells,” Phys. Stat. Sol. (a), vol. 201, pp. 2658–2662, Sep. 2004.
    [7] C. Rivera, J. L. Pau, J. Pereiro, and E. Munoz, “Properties of schottky barrier photodiodes based on InGaN–GaN MQW structures,” Superlattices Microstruct., vol. 36, pp. 849–857, Oct. 2004.
    [8] C. Rivera, J. L. Pau, A. Navarro, and E. Munoz, “Photoresponse of (In,Ga)N–GaN multiple-quantum-well structures in the visible and UVA ranges,” IEEE J. Quantum Electron., vol. 42, no. 1, pp. 51–58, Jan. 2006.
    [9] E. Monroy, E. Munoz, F.J. Sanchez, F. Calley, E. Calleja, B. Beaumont, P. Gibart, J.A. Munoz, F. Cusso, “High-performance GaN p-n junction photodetectors for solar ultraviolet applications,” Semicond. Sci. Technol., vol. 13, pp. 1042-1046, Sep. 1998.
    [10] N. Biyikli, I. Kimukin, O. Aytur, E. Ozbay, “Solar-blind AlGaN-based p-i-n photodiodes with low dark current and high detectivity,” IEEE Photon. Technol. Lett., vol.16, pp. 1718-1720, Jul. 2004.
    [11] O. Katz, V. Garber, B. Meyler, G. Bahir, J. Salzman, “Anisotropy in detectivity of GaN Schottky ultraviolet detectors: Comparing lateral and vertical geometry,” Appl. Phys. Lett. vol. 80, pp. 347-349, Jan. 2002.
    [12] J. Lia, Y. Xu, T.Y. Hsiang, W.R. Donaldson, “Picosecond response of gallium-nitride metal-semiconductor-metal photodetectors,” Appl. Phys. Lett., vol. 84, pp. 2091-2093, Mar. 2004.
    [13] H. C. Casey, G. G. Fountain, R. G. Alley, B. P. Keller, and S. P. DenBaars, “Low interface trap density for remote plasma deposited SiO2 on n-type GaN,” Appl. Phys. Lett., vol. 68, pp. 1850-1852, Mar. 1996.
    [14] L. W. Tu, W. C. Kuo, K. H. Lee, P. H. Tsao, C. M. Lai, A. K. Chu, and J. K. Sheu, “High-dielectric-constant Ta2O5/n-GaN metal-oxide-semiconductor structure,” Appl. Phys. Lett., vol. 77, pp. 3788-3790, Dec. 2000.
    [15] C. T. Lee, H. W. Chen, and H. Y. Lee, “Metal-oxide-semiconductor devices using Ga2O3 dielectrics on n-type GaN,” Appl. Phys. Lett., vol. 82, pp. 4304-4306. Jun.
    84
    2003.
    [16] C. X. Wang, N. Maeda, M. Hiroki, T. Kobayashi, and T. Enoki, Jpn. J. “High temperature characteristics of insulated-gate AlGaN/GaN heterostructure field-effect transistors with ultrathin Al2O3/Si3N4 bilayer,” Appl. Phys., Part 1, vol. 44, pp. 7889-7891, Nov. 2005.
    [17] J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, “Spectral response of plasmon resonant nanoparticles with a non-regular shape,” Opt. Express,vol. 6, pp. 213-219, 2000.
    [18] K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment,” J. Phys. Chem. B, vol. 107, pp. 668-677, 2003.
    [19] Schaadt, D. M.; Feng, B.; Yu, E. T. “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett., vol. 86, 063106, 2005.
    [20] Lin, C. H.; Chen, T. T.; Chen, Y. F. “Photocurrent enhancement of SnO2 nanowires through Au-nanoparticles decoration,” Opt. Express, vol. 16, 16916, 2008.
    [21] Kewei Liu, Makoto Sakurai, Meiyong Liao, and Masakazu Aono, “Giant Improvement of the Performance of ZnO Nanowire Photodetectors by Au Nanoparticles,” J. Phys. Chem. C 2010, 114, 19835–19839.
    [22] R. R. Pelá, C. Caetano, M. Marques, L. G. Ferreira, J. Furthmüller, and L. K. Teles, “Accurate band gaps of AlGaN, InGaN, and AlInN alloys calculations based on LDA-1/2 approach,” Appl. Phys. Lett. vol. 98, pp. 151907-1-151907-3, Apr. 2011.
    [23] P. Feng, X. Y. Xue, Y. G. Liu, Q. Wan, and T. H. Wang, “Achieving fast oxygen response in individual β–Ga2O3 nanowires by ultraviolet illumination,” Appl. Phys. Lett., vol. 89, 2006, Article 112114.
    [24] Sarah L. Westcott a, Steven J. Oldenburg a, T. Randall Lee b, Naomi J. Halas, “Construction of simple gold nanoparticle aggregates with controlled plasmon–plasmon interactions,” Chemical Physics Letters 300 1999. 651–655. [26] C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo and D. Wang, “ZnO nanowire UV photodetectors with high internal gain,” Nano Lett., vol. 7, pp. 1003-1009, 2007.
    [25] Yi-Jen Wu, Chin-Hua Hsieh, Po-Ham Chen, Jing-Yang Li, Li-Jen Chou,* and Lih-Juann Chen, “Plasmon Resonance Spectroscopy of Gold-in-Gallium Oxide Peapod and Core/Shell Nanowires,” ACS NANO, vol. 4, pp. 1393-1398, 2010

    無法下載圖示 校內:2019-01-21公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE