簡易檢索 / 詳目顯示

研究生: 薛智仁
Hsueh, Chih-Jen
論文名稱: 氮化鎵半導體量子點及氧化鎵奈米線 之成長及分析
The Growth and Analysis of GaN Quantum Dots and Ga2O3 Nanowires
指導教授: 劉全璞
Liu, Chuan-Pu
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 91
中文關鍵詞: 氧化鎵量子點奈米線氮化鎵
外文關鍵詞: gallium nitride, nanowire, quantum dot, gallium oxide
相關次數: 點閱:87下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本研究係分別利用分子束磊晶成長氮化鎵量子點,及以化學氣相沉機成長氧化鎵奈米線。氮化鎵量子點部分改變兩組不同的基板表面氮化時間,以製得不同型態之氮化鎵磊晶。結果顯示成長時間的增長會讓表面產生符合S-K成長模式的型態變化,並會增大其島狀物尺寸、密度及表面粗糙度。而隨成長時間持續增加磊晶內部會引入缺陷以舒緩內部應力累積。對於其發光特性,我們發現由2D薄膜轉成3D島狀物會使其發光波長由399 nm轉往387 nm處。
      對於氧化鎵奈米線部分,我們發現隨溫度升高會提高化學氣相沉機反應中起始成核點的移動能力並促進成核點生成轉化成穩定的核,且因不同溫度下會促進氧化鎵晶體的異向性成長而生成不同型態之一維奈米結構物。而氨氣流量增加會讓其表面形貌漸趨向產生類似鍍膜表面的型態,而其結晶性也逐漸變差,原因是氨氣參與反應的比重會隨流量增加而增加,使得其鍵結型態會由Ga-O逐漸轉向Ga-N的鍵結。最後我們對不同型態之氧化鎵觀察其發光性質,發現氧化鎵的一維奈米結構物有其異於粉體的特性發光波長,推測這些特性波長應與其晶體內部缺陷有所關連。

      This research deals with the growth of gallium nitride quantum dots by molecular beam Epitaxy (MBE), and gallium oxide nanowires by chemical vapor deposition (CVD). For the former, we studied various surface morphologies of the GaN epitaxial nanostuctures by changing two nitridation times for the buffer layer. The results proved that the quantum dot growth was followed by S-K growth mode. Moreover, the size, density, and roughness of the island structures increased when the growth time increased. However, the defects were introduced to reduce the stress accumulation during the continues growth of epitaxy. The photoluminescence properties showed the wavelength were shifted from 399 nm to 387 nm when 2D surface transformed to 3D island structure.
      For the growth of the Ga2O3 nanowires in CVD reaction, we observed the unstable nucleus of initial products would gain more mobility and transformed into stable cores when we raised the growth temperture. Different growth temperatures would promote the anisotropic growth of the Ga2O3 crystals to variant 1-D structures. It could let the surface morphology change to film structure and the crystallinity became worse when the NH3 flow rate increased. The reason is the proportion of the NH3 content increased along with the flow rate, because the bonding type of the products gradually changed from Ga-N to Ga-O bonding. Finally we studied the photoluminescence properties of various 1-D nanostructures. We discovered lights of various wavelengths emitted from 1-D nanostructures with powders, and the reasons are ascribed to the defects of the 1-D nanostuctures.

    中文摘要……………………………………………………………………..I 英文摘要………………………………………………….. ………………...II 目錄…………………………………………………………………………III 圖目錄……………………………………………………………………….VI 表目錄………………………………………………………………………..X 第一章 緒論………………………………………………..........................1 1-1 前言……………………………………………………………………..1 1-2 研究動機及目的………………………………………………………..5 第二章 理論基礎及文獻回顧…………………………………………….6 2-1 氮化鎵材料文獻回顧………………………………..............................6 2-1.1 III族氮化物結構簡介………………………………………………...6 2-1.2 氮化鎵相關元件製作發展史……………………………………...…6 2-1.3 磊晶成長基板選擇……………………………………...……………8 2-1.4 氮化鎵材料在白光照明上的應用…………………………………...9 2-2 分子束磊晶系統成長半導體量子點…………………………………16 2-2.1 分子束磊晶系統簡介【14、15】……………………………….....16 2-2.2 自我組合量子點製作……………………………………………….17 2-3 氧化鎵奈米線製作技術………………………………………………22 2-3.1氧化鎵材料結構簡介………………………………………………..22 2-3.2氧化鎵一維奈米結構簡介………………………………………..…24 2-3.3 奈米線之VLS及VS成長模式簡介……………………………….25 2-3.3(a) VLS成長…………………………………………………………..25 2-3.3(b) VS成長……………………………………………………………27 第三章 實驗方法及步驟………………………………………………….31 3-1 分子束磊晶成長氮化鎵量子點………………………………………..31 3-1.1 實驗流程……………………………………………………..……….31 3-1.2 量子點試片成長…………………………………………………..….32 3-1.3 氮化鎵表面型態鑑定…………………………………………….…..32 3-1.4 氮化鎵磊晶覆蓋率(equivalent coverage)推算……………………33 3.2 化學氣相沈積製作氧化鎵奈米線……………………………………..35 3-2.1 實驗流程……………………………………………………………...35 3-2.2 實驗藥品及材料……………………………………………………...35 3-2.3 試片清洗及催化劑塗佈……………………………………………...36 3-2.4 氧化鎵成長流程……………………………………………………...38 3-3 分析方法………………………………………………………………..41 3-3.1 粉末X光繞射儀(Powder XRD)…………………………………41 3-3.2 掃瞄式電子顯微鏡(SEM)………………………………………...41 3-3.3 穿透式電子顯微鏡(TEM)…………………………………………42 3-3.4 化學分析電子能譜儀(ESCA)…………………………………….42 3-3.5 光致螢光光譜(Photoluminescence;PL)…………………………42 第四章 結果與討論……………………………………………………….44 4-1 氮化鎵量子點結構及性質分析……………………………………….44 4-1.1 氮化鎵量子點表面型態……………………………………………..44 4-1.1(a) 短基板氮化時間系列表面型態…………………………..………44 4-1.1(b) 長基板氮化時間系列表面型態…………………………………..44 4-1.2 氮化鎵量子點覆蓋率推算…………………………………………...49 4-1.3 氮化鎵量子點及磊晶之結構分析…………………………………...55 4-1.4 氮化鎵量子點光制螢光性質量測…………………………………...59 4-2 氧化鎵奈米線結構及性質性質………………………………………..61 4-2.1 不同溫度下成長之氧化鎵結構及型態變化………………………..61 4-2.2 不同氨氣流量下成長之氧化鎵結構及型態變化…………………..72 4-2.3 不同成長條件之氧化鎵結構其光制螢光特性……………………..83 第五章 結論……………………………………………………………….85 參考文獻…………………………………………………………………….87 致謝………………………………………………………………………….90 自述……………………………………………………………………….....91

    【1】S. Nakamura et al., Appl. Phys. Lett. 72, 211 (1998).
    【2】S. Strite and H. Morkoc, J. Vac. Sci. Technol. B10, 1237 (1992).
    【3】史光國, “GaN 藍色發光及雷射二極體之發展現況”, 工業材料 126, 154頁, 民國86年6月.
    【4】張立德、牟季美,奈米材料與奈米結構,滄海書局,2002.
    【5】D.J. Eaglesham, and M Cerullo, Phys. Rev. Lett. 64, 1943 (1990).
    【6】A. Madhukar et al., Appl. Phys. Lett. 64, 2727 (1994).
    【7】E. Kurtz et al., J. Cryst. Growth 214/215, 712 (2000).
    【8】B. Daudin et al., Dia. Related Mat. 9, 506 (2000).
    【9】Chiao-Yi Hwang, “Growth and Characterization of Gallium Nitride on (0001) sapphire by Plasma Enhanced Atomic Layer Epitaxy and by Low Pressure Metaloganic Chemical Vapor Deposition”, Ph.D. Mechenics and Materials Science, Rutgers University, Piscataway, NJ, 1995.
    【10】廖偉材, “氮化鋁鎵/氮化鎵超晶格原子層磊晶之研究”, 逢甲大學材料科學研究所 碩士論文, 2002.
    【11】J.A. Freitas Jr. et al., J. Cryst. Growth 231, 322(2001).
    【12】Chan-Wook Jeon, and Seon-Hyo Kim, Mat. Sci. Eng. B57,110(1999).
    【13】L. Liu, and J.H. Edgar, Mat. Sci. Eng. R 37, 61(2002).
    【14】A.P. Lima et al., J. Cryst. Growth 197, 31(1999).
    【15】Koichi Tachibana et al., App. Phys. Let. 76, 3212(2000).
    【16】倪澤恩, 李清庭, “分子束磊晶成長系統簡介”, 真空科技 七卷三、四期, 民國八十三年。
    【17】J.W. Matthews, “Epitaxial Growth”, ACADEMIC PRESS, New York, pp. 37-69, 1975.
    【18】I.N. Stranski, and L. Krastanow, Sitzungsberichte d. Akad. d. Wissenschaften in Wien, Abt. Iib, Band 146, 797 (1937).
    【19】Y.W. Mo et al., Phys. Rev. Lett. 65, 1020 (1990).
    【20】N. Grandjean, B. Damilano, and J. Massies, IPAP Conference Series 1, 397(2000).
    【21】J. Åhman, G. Svensson, and J. Albertsson, Acta Cryst. C52, 1336 (1996).
    【22】J. C. Lavalley et al., Phys. Chem. Chem. Phys. 5, 1301(2003).
    【23】C. H. Liang et al., Appl. Phys. Lett. 78, 3202(2001).
    【24】M. Zinkevich and F. Aldinger, J. Am. Ceram. Soc. 87, 683(2004).
    【25】D. P. Yu et al., Solid State Comm. 109, 677(1999).
    【26】W.Q. Han et al., Solid State Comm. 115, 527(2000).
    【27】J. Zhang and L. Zhang, Solid State Comm. 122, 493(2002).
    【28】J.Y. Li et al., J. of Alloys and Comp. 306, 300(2000).
    【29】X. Xiang et al., Chem. Phys. Let. 378, 660(2003).
    【30】Z. Wei, Z.R. Dai, and Z.L. Wang, Science 291, 1947(2001).
    【31】J. Li et al., J. Phys. Condens. Mater. 13, L937(2001).
    【32】H.P. Ho et al., Chem. Phys. Let. 382, 573(2003).
    【33】S. Sharma and M.K. Sunkara, J. Am. Chem. Soc. 124, 12288(2002).
    【34】R.S. Wanger, W.C. Ellis, Appl. Phys. Letters 4, 89(1964).
    【35】E.I. Givargizov, J. Cryst. Growth 31, 20(1975).
    【36】A.M. Morales and C.M. Lieber, Science 279, 208(1998).
    【37】J. Hu, T.W. Odom, and C.M. Lieber, Acc. Chem. Res. 32, 435(1999).
    【38】C.W. Zhou et al., J. of Mater. Res. 18, 245(2003).
    【39】P. Yang and C.M. Lieber, J. Mater. Res. 12, 2981(1997).
    【40】L.X. Zhao, G.W. Meng, X.S. Peng, X.Y. Zhang, L.D. Zhang, Appl. Phys. A 74, 587(2002).
    【41】G. Kamler et al., J. Cryst. Growth 212, 39(2000).
    【42】N. Grandjean, B. Damilano, and J. Massies, J. Phys.: Condens. Matter 13, 6945 (2001).
    【43】M. Arlery et al., App. Phys. Lett. 74, 3287(1999).
    【44】C.D. Wagner et al., “Handbook of X-ray photoelectron spectroscopy”, Perking-Elmer Corporation, Physical Electronics Division.
    【45】T. Harwig and F. Kellendonk, J. Solid State Chem. 255, 24(1978).
    【46】V.I. Vasil’tsiv et al., Ukr. Fiz. Zh. 33, 1320(1988).

    下載圖示 校內:立即公開
    校外:2004-08-04公開
    QR CODE