| 研究生: |
張宇誠 Chang, Yu-Chen |
|---|---|
| 論文名稱: |
以結合資安觀點之TOE模型探討零售商採用行動支付系統之意圖 An Investigation for Retailers in Adopting Mobile Payment Systems Intention using TOE Model with Security Perspective |
| 指導教授: |
呂執中
Lyu, Jr-Jung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 資訊管理研究所 Institute of Information Management |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 75 |
| 中文關鍵詞: | 零售商 、行動支付 、TOE模型 、資訊安全 、PLS-SEM |
| 外文關鍵詞: | Mobile payment, Retailer, TOE model, Information security, PLS-SEM |
| 相關次數: | 點閱:173 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著手機與智慧型應用程式日漸成熟,發展越來越普及之下,行動支付儼然
成為全世界的浪潮。國際支付大廠布局已走向「全境支付」, 台灣 行動支付平台
期許有更多零售業者加入, 一同 打造出真正的無現金生活 。 資訊安全一直是網際
網路發展迅速的情況下,背後隱藏的風險。行動支 付 使用率與日俱增,相對也帶
來更大的資訊安全危機。安全性和隱私問題代表著態度上的障礙,因此是可被探
討的障礙。這種態度實際影響到是否增加 行動支付的使用量,對於行動支付的平
台業者及採用行動支付方式的商人都具有直接的重要 性 。
本研究著重在於零售商對於行動支付科技的導入 意圖 ,並運用 TOE模型當
作 研究 模型的基礎, 結合資訊安全的構面,進而提出 TOEs模型。 透過問卷發放
來獲取零售 業者 的相關資料 ,並且使用偏最小平方法進行分析 PLS結合主成份
分析與多元 迴歸 分析,不但較符合實務上之型態,也能滿足量化研究的需求。 綜
合以上,本研究的目的為 探討資訊安全對於零售商採用行動支付系統之意 圖 。 以
問卷結果內容做為行動支付平台提供商管理實務意涵上的討論,提供未來政府或
平台業者 訂定相關政策時之參考。
研究結果顯示,本研究之模型解釋力為 0.457,資訊安全確實對於商家採用
行動支付時產生顯著的影響 (p value=0.000),在 TOE模型當中多半顯示,科技、
組織、環境都會對採用新科技有顯著影響,卻鮮少談論到資訊安全這塊,導致現
行商家之行為和意圖有著不一樣的關係。本研究也證實採用成本、相容性、採用
成本效益、競爭壓力並不會對採用行動支付意圖造成顯著影響。對於平台業者而
言,鎖定那些具有基礎科技能力、本 身客群大多都曾使用過行動支付的零售業者,
並同時降低他們對於資訊安全的擔憂,將會大幅增加願意採用行動支付的意圖。
With the global pandemic raging, emerging contactless payment modes have grown and thrived. Most of the current research on mobile payment focuses on general users, and only a small amount of research has been conducted on retailers. Mobile payment is part of a two-sided market, where both sides require a significant population to maintain the operation of the mobile payment market. Therefore, research on the adoption of retailers has become very valuable. In addition, in the past, there have been few discussions as to why retailers adopt mobile payment systems in their stores. Based on this dilemma, this study proposes a model that adds information security to the TOE model, which is called the TOEs model. This model includes four dimensions: technology, organization, environment, and information security. PLS-SEM was used to verify that the TOEs model is an effective model to examine retail businesses. Research results confirm that information security has a critical impact on retailer intention toward accepting mobile payments. The findings of this study can also assist mobile payment platforms and merchants who are considering the implementation of mobile payment system solutions.
Abdul Hameed, M., & Counsell, S. (2012). Assessing the influence of environmental and CEO characteristics for adoption of information technology in organizations. Journal of technology management & innovation, 7(1), 64-84.
Agarwal, R., & Prasad, J. (1997). The role of innovation characteristics and perceived voluntariness in the acceptance of information technologies. Decision sciences, 28(3), 557-582.
Ahani, A., Rahim, N. Z. A., & Nilashi, M. (2017). Forecasting social CRM adoption in SMEs: A combined SEM-neural network method. Computers in Human Behavior, 75, 560-578.
Alkhowaiter, W. A. (2020). Digital payment and banking adoption research in Gulf countries: A systematic literature review. International Journal of Information Management, 53, 102102.
Anwar, S., & Prasad, R. (2018). Framework for future telemedicine planning and infrastructure using 5G technology. Wireless Personal Communications, 100(1), 193-208.
Arvidsson, N. (2014). Consumer attitudes on mobile payment services–results from a proof of concept test. International Journal of Bank Marketing.
Atobishi, T., Bahna, M., Takács-György, K., & Fogarassy, C. (2021). Factors Affecting the Decision of Adoption Cloud Computing Technology: The Case of Jordanian Business Organizations. Acta Polytechnica Hungarica, 18(5).
Baker, J. (2012). The technology–organization–environment framework. Information systems theory, 231-245.
Bhardwaj, A. K., Garg, L., Garg, A., & Gajpal, Y. (2021). E-Learning during COVID-19 Outbreak: Cloud Computing Adoption in Indian Public Universities. Cmc-Computers Materials & Continua, 66(3), 2471-2492.
Choi, S.-O., Kim, S.-H., Lee, D.-Y., & Park, J.-K. (2016). Factors influencing the state anxiety of nursing students before initial clinical experience. Indian Journal of Science and Technology, 9(41), 1-8.
Cronbach, L. J. (1957). The two disciplines of scientific psychology. American psychologist, 12(11), 671.
Dahlberg, T., Guo, J., & Ondrus, J. (2015). A critical review of mobile payment research. Electronic Commerce Research and Applications, 14(5), 265-284.
Dahlberg, T., Mallat, N., Ondrus, J., & Zmijewska, A. (2008). Past, present and future of mobile payments research: A literature review. Electronic Commerce Research and Applications, 7(2), 165-181.
Dewan, S. G., & Chen, L.-d. (2005). Mobile payment adoption in the US: A cross-industry, crossplatform solution. Journal of Information Privacy and Security, 1(2), 4-28.
Dinev, T., & Hart, P. (2006). An extended privacy calculus model for e-commerce transactions. Information systems research, 17(1), 61-80.
Fan, J., Shao, M., Li, Y., & Huang, X. (2018). Understanding users’ attitude toward mobile payment use. Industrial Management & Data Systems.
Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of marketing research, 18(1), 39-50.
Fu, H.-P., & Chang, T.-S. (2016). An analysis of the factors affecting the adoption of cloud consumer relationship management in the machinery industry in Taiwan. Information Development, 32(5), 1741-1756.
Gangwar, H., Date, H., & Ramaswamy, R. (2015). Understanding determinants of cloud computing adoption using an integrated TAM-TOE model. Journal of enterprise information management.
Gao, F., Rau, P.-L. P., & Zhang, Y. (2018). Perceived mobile information security and adoption of mobile payment services in China. In Mobile Commerce: Concepts, Methodologies, Tools, and Applications (pp. 1179-1198): IGI Global.
Ghobakhloo, M., & Tang, S. (2013). The role of owner/manager in adoption of electronic commerce in small businesses. Journal of Small Business and Enterprise Development, 20, 754-787.
Hair, J. F., Anderson, R. E., Tatham, R. L., & William, C. (1998). Black (1998), Multivariate data analysis. In: Upper Saddle River, NJ: Prentice Hall.
Hair, J. F., Black, W. C., Babin, B. J., Anderson, R. E., & Tatham, R. (2006). Multivariate data analysis . Uppersaddle River. In: NJ: Pearson Prentice Hall.
Hair Jr, J. F., Matthews, L. M., Matthews, R. L., & Sarstedt, M. (2017). PLS-SEM or CB-SEM: updated guidelines on which method to use. International Journal of Multivariate Data Analysis, 1(2), 107-123.
Hameed, M. A., & Arachchilage, N. A. G. (2016). A model for the adoption process of information system security innovations in organisations: a theoretical perspective. arXiv preprint arXiv:1609.07911.
Hameed, M. A., Counsell, S., & Swift, S. (2012). A conceptual model for the process of IT innovation adoption in organizations. Journal of Engineering and Technology Management, 29(3), 358-390.
Henseler, J., Dijkstra, T. K., Sarstedt, M., Ringle, C. M., Diamantopoulos, A., Straub, D. W., . . . Calantone, R. J. (2014). Common beliefs and reality about PLS: Comments on Rönkkö and Evermann (2013). Organizational research methods, 17(2), 182-209.
Hu, W. C., Lee, C.-W., & Kou, W. (2005). Advances in security and payment methods for mobile commerce: Idea Group Incorporated.
Huh, J. H., Verma, S., Rayala, S. S. V., Bobba, R. B., Beznosov, K., & Kim, H. (2017). I Don’t Use Apple Pay because it’s less secure...: perception of security and usability in mobile tap-and-pay. Paper presented at the Workshop on Usable Security, San Diego, CA.
Jocevski, M., Ghezzi, A., & Arvidsson, N. (2020). Exploring the growth challenge of mobile payment platforms: A business model perspective. Electronic Commerce Research and Applications, 40, 13.
Johnson, V. L., Kiser, A., Washington, R., & Torres, R. (2018). Limitations to the rapid adoption of M-payment services: Understanding the impact of privacy risk on M-Payment services. Computers in Human Behavior, 79, 111-122.
Kartiwi, M., & MacGregor, R. C. (2007). Electronic commerce adoption barriers in small to medium-sized enterprises (SMEs) in developed and developing countries: A cross-country comparison. Journal of Electronic Commerce in Organizations (JECO), 5(3), 35-51.
Khalilzadeh, J., Ozturk, A. B., & Bilgihan, A. (2017). Security-related factors in extended UTAUT model for NFC based mobile payment in the restaurant industry. Computers in Human Behavior, 70, 460-474.
Khan, A. N., & Ali, A. (2018). Factors affecting retailer’s adopti on of mobile payment systems: A SEM-neural network modeling approach. Wireless Personal Communications, 103(3), 2529-2551.
Kim, C., Mirusmonov, M., & Lee, I. (2010). An empirical examination of factors influencing the intention to use mobile payment. Computers in Human Behavior, 26(3), 310-322.
Kim, D. J., Ferrin, D. L., & Rao, H. R. (2008). A trust-based consumer decision-making model in electronic commerce: The role of trust, perceived risk, and their antecedents. Decision support systems, 44(2), 544-564.
Kimiagari, S., & Baei, F. (2021). Promoting e-banking actual usage: mix of technology acceptance model and technology-organisation-environment framework. Enterprise Information Systems, 1-57.
Koenig-Lewis, N., Marquet, M., Palmer, A., & Zhao, A. L. (2015). Enjoyment and social influence: predicting mobile payment adoption. The Service Industries Journal, 35(10), 537-554.
Kreyer, N., Pousttchi, K., & Turowski, K. (2002). Standardized payment procedures as key enabling factor for mobile commerce. In K. Bauknecht, A. M. Tjoa, & G. Quirchmayr (Eds.), E-Commerce and Web Technologies, Proceedings (Vol. 2455, pp. 400-409). Berlin: Springer-Verlag Berlin.
Kshetri, N. (2007). Barriers to e-commerce and competitive business models in developing countries: A case study. Electronic Commerce Research and Applications, 6(4), 443-452.
Lee, C.-P., & Shim, J. P. (2007). An exploratory study of radio frequency identification (RFID) adoption in the healthcare industry. European Journal of Information Systems, 16(6), 712-724.
Leong, C.-M., Tan, K.-L., Puah, C.-H., & Chong, S.-M. (2020). Predicting mobile network operators users m-payment intention. European Business Review.
Li, D. C. (2015). Online security performances and information security disclosures. Journal of computer information systems, 55(2), 20-28.
Liébana-Cabanillas, F., & Lara-Rubio, J. (2017). Predictive and explanatory modeling regarding adoption of mobile payment systems. Technological Forecasting and Social Change, 120, 32-40.
Liébana-Cabanillas, F., Marinkovic, V., de Luna, I. R., & Kalinic, Z. (2018). Predicting the determinants of mobile payment acceptance: A hybrid SEM-neural network approach. Technological Forecasting and Social Change, 129, 117-130.
Lu, Y., Yang, S., Chau, P. Y., & Cao, Y. (2011). Dynamics between the trust transfer process and intention to use mobile payment services: A cross-environment perspective. Information & management, 48(8), 393-403.
Lwin, M., Wirtz, J., & Williams, J. D. (2007). Consumer online privacy concerns and responses: a power–responsibility equilibrium perspective. Journal of the Academy of Marketing Science, 35(4), 572-585.
Mahakittikun, T., Suntrayuth, S., & Bhatiasevi, V. (2020). The impact of technological-organizational-environmental (TOE) factors on firm performance: merchant’s perspective of mobile payment from Thailand’s retail and service firms. Journal of Asia Business Studies.
Mallat, N. (2007). Exploring consumer adoption of mobile payments–A qualitative study. The Journal of Strategic Information Systems, 16(4), 413-432.
Mallat, N., & Tuunainen, V. K. (2008). Exploring merchant adoption of mobile payment systems: An empirical study. E-service Journal, 6(2), 24-57.
Markendahl, J., Smith, M., & Andersson, P. (2010). Analysis of roles and position of mobile network operators in mobile payment infrastructure.
Maroufkhani, P., Ismail, W. K. W., & Ghobakhloo, M. (2020). Big data analytics adoption model for small and medium enterprises. Journal of Science and Technology Policy Management.
Mishra, A. N., Konana, P., & Barua, A. (2007). Antecedents and consequences of internet use in procurement: an empirical investigation of US manufacturing firms. Information systems research, 18(1), 103-120.
Moghavvemi, S., Mei, T. X., Phoong, S. W., & Phoong, S. Y. (2021). Drivers and barriers of mobile payment adoption: Malaysian merchants' perspective. Journal of Retailing and Consumer Services, 59, 12.
Molla, A., & Licker, P. S. (2005). eCommerce adoption in developing countries: a model and instrument. Information & management, 42(6), 877-899.
Moore, G. C., & Benbasat, I. (1991). Development of an instrument to measure the perceptions of adopting an information technology innovation. Information systems research, 2(3), 192-222.
Myers, R. H., & Myers, R. H. (1990). Classical and modern regression with applications (Vol. 2): Duxbury press Belmont, CA.
Newman, M. E., Barabási, A.-L. E., & Watts, D. J. (2006). The structure and dynamics of networks: Princeton university press.
Ogundana, O., Okere, W., Ayomoto, O., Adesanmi, D., Ibidunni, S., & Ogunleye, O. (2017). ICT and accounting system of SMEs in Nigeria. Management Science Letters, 7(1), 1-8.
Oliveira, T., Thomas, M., Baptista, G., & Campos, F. (2016). Mobile payment: Understanding the determinants of customer adoption and intention to recommend the technology. Computers in Human Behavior, 61, 404-414.
Pal, D., Vanijja, V., & Papasratorn, B. (2015). An empirical analysis towards the adoption of NFC mobile payment system by the end user. Procedia Computer Science, 69, 13-25.
Patil, P., Tamilmani, K., Rana, N. P., & Raghavan, V. (2020). Understanding consumer adoption of mobile payment in India: Extending Meta-UTAUT model with personal innovativeness, anxiety, trust, and grievance redressal. International Journal of Information Management, 54, 102144.
Petrova, K., & Wang, B. (2013). Retailer adoption of mobile payment: A qualitative study. Journal of Electronic Commerce in Organizations (JECO), 11(4), 70-89.
Premkumar, G., & Roberts, M. (1999). Adoption of new information technologies in rural small businesses. Omega, 27(4), 467-484.
Rahayu, R., & Day, J. (2015). Determinant factors of e-commerce adoption by SMEs in developing country: evidence from Indonesia. Procedia-social and behavioral sciences, 195, 142-150.
Ram-rez, A. M. H., & López-Zapata, E. (2021). Analysis of the factors influencing adoption of 3D design digital technologies in Colombian firms. Journal of enterprise information management.
Rogers, E. M. (2010). Diffusion of innovations: Simon and Schuster.
Salleh, K. A., Janczewski, L. J., & Beltran, F. (2015). SEC-TOE Framework: Exploring Security Determinants in Big Data Solutions Adoption. Paper presented at the PACIS.
Schierz, P. G., Schilke, O., & Wirtz, B. W. (2010). Understanding consumer acceptance of mobile payment services: An empirical analysis. Electronic Commerce Research and Applications, 9(3), 209-216.
Shin, D.-H. (2010). The effects of trust, security and privacy in social networking: A security-based approach to understand the pattern of adoption. Interacting with computers, 22(5), 428-438.
Slade, E. L., Williams, M. D., & Dwivedi, Y. K. (2013). Mobile payment adoption: Classification and review of the extant literature. The Marketing Review, 13(2), 167-190.
Smith, S. N., Nah, F. F.-H., & Cheng, M. X. (2016). The impact of security cues on user perceived security in e-commerce. Paper presented at the International Conference on Human Aspects of Information Security, Privacy, and Trust.
Soto-Acosta, P., Popa, S., & Palacios-Marqués, D. (2017). Social web knowledge sharing and innovation performance in knowledge-intensive manufacturing SMEs. The Journal of Technology Transfer, 42(2), 425-440.
Tornatzky, L. G., Fleischer, M., & Chakrabarti, A. K. (1990). Processes of technological innovation: Lexington books.
Tornatzky, L. G., & Klein, K. J. (1982). Innovation characteristics and innovation adoption-implementation: A meta-analysis of findings. IEEE Transactions on engineering management(1), 28-45.
Varshney, U. (2002). Mobile payments. Computer, 35(12), 120-121.
Wang, J. H. (2021). Impact of mobile payment on e-commerce operations in different business scenarios under cloud computing environment. International Journal of System Assurance Engineering and Management, 12(4), 776-789.
Wang, Y.-S., Li, H.-T., Li, C.-R., & Zhang, D.-Z. (2016). Factors affecting hotels' adoption of mobile reservation systems: A technology-organization-environment framework. Tourism Management, 53, 163-172.
Westin, A. F. (1968). Privacy and freedom. Washington and Lee Law Review, 25(1), 166.
Wu, J., Liu, L., & Huang, L. (2017). Consumer acceptance of mobile payment across time. Industrial Management & Data Systems.
Zhang, J. X., Yan, L. X. M., & Song, Y. (2019). The Role of Consumers' Perceived Security, Perceived Control, Interface Design Features, and Conscientiousness in Continuous Use of Mobile Payment Services. Sustainability, 11(23), 16.
Zhou, T. (2011a). The effect of initial trust on user adoption of mobile payment. Information Development, 27(4), 290-300.
Zhou, T. (2011b). The impact of privacy concern on user adoption of location‐based services. Industrial Management & Data Systems.
Zhou, T. (2014). Understanding the determinants of mobile payment continuance usage. Industrial Management & Data Systems.
Zhu, K., & Kraemer, K. L. (2005). Post-adoption variations in usage and value of e-business by organizations: cross-country evidence from the retail industry. Information systems research, 16(1), 61-84.
Zhu, K., Kraemer, K. L., & Xu, S. (2006). The process of innovation assimilation by firms in different countries: a technology diffusion perspective on e-business. Management science, 52(10), 1557-1576.