簡易檢索 / 詳目顯示

研究生: 郭哲寧
Kuo, Che-NIing
論文名稱: 自組裝薄膜技術製作可穿戴式 Ti3C2Tx 型 MXene 應變感測器
Self-Assembled Ti₃C₂Tx MXene-Based Strain Sensors for Wearable Devices
指導教授: 劉全璞
Liu, Chuan-Pu
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 107
中文關鍵詞: 邁科烯自組裝薄膜應變感測壓阻穿戴式裝置
外文關鍵詞: MXene, Self-assembly film, Strain sensor, Piezoresistive sensors
相關次數: 點閱:6下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著全球科技發展與社會邁向超高齡化,以及對可穿戴式健康監測裝置的需求日益增加。在這些系統中,柔性應力/應變感測器是將機械形變轉化為電訊號的核心元件,扮演關鍵角色。然而傳統剛性感測器難以滿足穿戴需求,為此二維材料MXene因其金屬導電性、優異柔韌性及豐富的表面官能基而備受矚目。
    現有MXene感測器製備方法存在挑戰諸如:傳統塗佈技術難以製作出大面積、均勻且厚度可控的奈米級薄膜,而複合材料感測器則主要依賴高分子結構承擔機械形變,MXene本身的作用有限。為克服這些限制,本研究聚焦於界面自組裝技術,該技術在X-Y平面製作MXene薄膜且應用於感測器領域仍屬罕見。
    本研究目標是開發藉由界面自組裝技術,在柔性基板上製備具優異均勻性與連續性的奈米級MXene薄膜,並與傳統滴塗法製成的感測器進行性能比較。我們成功合成高純度、高濃度(9 mg/ml)的MXene奈米片,材料分析證實選擇性蝕刻成功移除前驅物中的鋁原子,奈米片純度高、結晶性良好。透過SEM與AFM影像可見,自組裝薄膜由排列有序的奈米片組成,表面平整,厚度達奈米級。
    應力/應變感測性能測試結果顯示,自組裝感測器元件的應力/應變響應穩定且可重現,在不同壓力與彎曲應變下均能輸出規律訊號。特別是在數十奈米的厚度下應變感測靈敏度(Gauge Factor)可達1.44。與之相比,滴塗法感測器因薄膜無序排列導致響應不穩定,且在多次測試後發生不可逆的性能退化。另外也透過一系列的測試說明自組裝MXene薄膜可應用於穿戴式裝置,包括人體運動監測與微震動測試,以及字跡辨認裝置上的可行性。
    根據研究結果,說明界面自組裝技術在製備高性能、穩定MXene薄膜感測器方面的巨大潛力。這不僅為應變感測器提供了一種新的製備方法,也為開發適用於可穿戴裝置的大面積柔性電子元件提供了另一種可選方式。

    MXene, a novel 2D material, has garnered significant interest due to its promising applications in different fields, including flexible pressure sensors, due to its excellent electrical properties and robust mechanical characteristics. This study focuses on the fabrication of an MXene self-assembly film-based flexible wearable multifunctional sensor. Microstructural analysis of the MXene self-assembled film reveals that it consists of single or a few layers of a nanosheet, with a thickness below 1μm even reaching nanometer scale. The self-assembly MXene sensors exhibited stable current responses under varying frequencies, demonstrating their potential for flexible force sensing applications. Additionally, the sensors responded distinctly to inward and outward bending, indicating their capability to detect various human activities successfully.

    摘要 II Extended Abstract III 致謝 IX 目錄 XI 圖目錄 XV 表目錄 XIV 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機 2 第二章 文獻回顧 4 2.1 MXene介紹與材料特性 4 2.2 MXene的合成方法 5 2.2.1 Top-down 5 2.2.1.1含HF的方法 5 2.2.1.2無HF的方法 8 2.2.2 Bottom-up 12 2.2 基於MXene的柔性應力感測器 12 2.2.1 壓阻型 14 2.2.2 電容型 19 2.2.3 壓電型 19 2.2.4 擦電型 23 2.3 基於MXene的應力感測器設計方式 24 2.3.1 一維奈米線 24 2.3.2 二維薄膜 24 2.3.3 三維結構 27 2.4 利用介面自組裝製作大面積MXene薄膜的技術 28 2.4.1 Langmuir−Blodgett and Langmuir−Schaefer Technique 28 2.4.2自組裝薄膜 29 第三章 實驗設計 32 3.1 材料合成與自組裝薄膜製作 32 3.2 材料分析 32 3.3 應力感測器製作 33 3.4 壓應力測試與形變測試 34 第四章 分析儀器 35 4.1 材料分析儀器 35 4.1.1 X射線繞射儀 (XRD) 35 4.1.2 掃描式電子顯微鏡 (SEM) 36 4.1.3 穿透式電子顯微鏡 (TEM) 36 4.1.4 能量分散式光譜儀 (EDS) 38 4.1.5. X光光電子能譜儀 (XPS) 39 4.1.6. 傅立葉轉換紅外光譜 (FTIR) 40 4.1.7. 原子力顯微鏡 (AFM) 41 第五章 實驗結果 43 5.1 材料分析結果 43 5.1.1 XRD 43 5.1.2 SEM & EDS 44 5.1.3 TEM & EDS 49 5.1.4 XPS 53 5.1.5 FTIR 58 5.1.6 AFM 58 5.2 應力/應變元件性能分析結果 61 5.2.1 壓應力測試 61 5.2.2彎曲測試 68 5.2.3 穩定度測試 70 5.2.4 自組裝MXene薄膜應力與應變感測器性能評估與機制解釋 72 5.2.5應用 74 第六章 結論與展望 78 參考文獻 79

    1 G. Schwartz, B. C. K. Tee, J. Mei, A. L. Appleton, D. H. Kim, H. Wang, and Z. Bao, Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring. Nature Communications. 4, 1859 (2013)
    2 B. Dong, Y. Yang, Q. Shi, S. Xu, Z. Sun, S. Zhu, Z. Zhang, D.-L. Kwong, G. Zhou, K.-W. Ang, and C. Lee, Wearable Triboelectric–Human–Machine Interface (THMI) Using Robust Nanophotonic Readout. ACS Nano. 14, 8915-8930 (2020)
    3 D. Silvera-Tawil, D. Rye, and M. Velonaki, Artificial skin and tactile sensing for socially interactive robots: A review. Robotics and Autonomous Systems. 63, 230-243 (2015)
    4 D. H. Ho, Y. Y. Choi, S. B. Jo, J.-M. Myoung, and J. H. Cho, Sensing with MXenes: Progress and Prospects. Advanced Materials. 33, 2005846 (2021)
    5 R. Z. Qin, J. Nong, K. Q. Wang, Y. S. Liu, S. B. Zhou, M. J. Hu, H. B. Zhao, and G. C. Shan, Recent Advances in Flexible Pressure Sensors Based on MXene Materials. Advanced Materials. 36, (2024)
    6 T. Bashir, S. A. Ismail, J. Q. Wang, W. H. Zhu, J. Z. Zhao, and L. J. Gao, MXene terminating groups =O, -F or -OH, -F or =O, -OH, -F, or =O, -OH, -Cl? Journal of Energy Chemistry. 76, 90-104 (2023)
    7 J. Bai, W. Gu, Y. Bai, Y. Li, L. Yang, L. Fu, S. Li, T. Li, and T. Zhang, Multifunctional Flexible Sensor Based on PU-TA@MXene Janus Architecture for Selective Direction Recognition. Advanced Materials. 35, 2302847 (2023)
    8 M. Peng, M. Dong, W. Wei, H. Xu, C. Liu, and C. Shen, The introduction of amino termination on Ti3C2 MXene surface for its flexible film with excellent property. Carbon. 179, 400-407 (2021)
    9 P. Das, P. K. Marvi, S. Ganguly, X. W. Tang, B. Wang, S. Srinivasan, A. R. Rajabzadeh, and A. Rosenkranz, MXene-Based Elastomer Mimetic Stretchable Sensors: Design, Properties, and Applications. Nano-Micro Letters. 16, (2024)
    10 Q. Zhao, L. Yang, Y. Ma, H. Huang, H. He, H. Ji, Z. Wang, and J. Qiu, Highly sensitive, reliable and flexible pressure sensor based on piezoelectric PVDF hybrid film using MXene nanosheet reinforcement. Journal of Alloys and Compounds. 886, 161069 (2021)
    11 D. Lei, N. Liu, T. Su, Q. Zhang, L. Wang, Z. Ren, and Y. Gao, Roles of MXene in Pressure Sensing: Preparation, Composite Structure Design, and Mechanism. Advanced Materials. 34, 2110608 (2022)
    12 Y. Ma, N. Liu, L. Li, X. Hu, Z. Zou, J. Wang, S. Luo, and Y. Gao, A highly flexible and sensitive piezoresistive sensor based on MXene with greatly changed interlayer distances. Nature Communications. 8, 1207 (2017)
    13 X.-F. Zhao, C.-Z. Hang, H.-L. Lu, K. Xu, H. Zhang, F. Yang, R.-G. Ma, J.-C. Wang, and D. W. Zhang, A skin-like sensor for intelligent Braille recognition. Nano Energy. 68, 104346 (2020)
    14 X. M. Wang, L. Weng, X. R. Zhang, L. Z. Guan, and X. Li, Preparation of multifunctional self-healing MXene/PVA double network hydrogel wearable strain sensor for monitoring human body and organ movement. Ceramics International. 49, 26759-26766 (2023)
    15 Y. Cai, J. Shen, C.-W. Yang, Y. Wan, H.-L. Tang, A. A. Aljarb, C. Chen, J.-H. Fu, X. Wei, K.-W. Huang, Y. Han, S. J. Jonas, X. Dong, and V. Tung, Mixed-dimensional MXene-hydrogel heterostructures for electronic skin sensors with ultrabroad working range. Science Advances. 6, eabb5367 (2020)
    16 S. P. Zhang, F. M. Guo, M. Li, M. D. Yang, D. Zhang, L. Han, X. J. Li, Y. J. Zhang, A. Y. Cao, and Y. Y. Shang, Fast gelling, high performance MXene hydrogels for wearable sensors. Journal of Colloid and Interface Science. 658, 137-147 (2024)
    17 Q. Wang, X. Pan, C. Lin, H. Gao, S. Cao, Y. Ni, and X. Ma, Modified Ti3C2TX (MXene) nanosheet-catalyzed self-assembled, anti-aggregated, ultra-stretchable, conductive hydrogels for wearable bioelectronics. Chemical Engineering Journal. 401, 126129 (2020)
    18 M. Chao, L. He, M. Gong, N. Li, X. Li, L. Peng, F. Shi, L. Zhang, and P. Wan, Breathable Ti3C2Tx MXene/Protein Nanocomposites for Ultrasensitive Medical Pressure Sensor with Degradability in Solvents. ACS Nano. 15, 9746-9758 (2021)
    19 C. Ma, Q. Yuan, H. Du, M.-G. Ma, C. Si, and P. Wan, Multiresponsive MXene (Ti3C2Tx)-Decorated Textiles for Wearable Thermal Management and Human Motion Monitoring. ACS Applied Materials & Interfaces. 12, 34226-34234 (2020)
    20 S. J. Kim, J. Choi, K. Maleski, K. Hantanasirisakul, H.-T. Jung, Y. Gogotsi, and C. W. Ahn, Interfacial Assembly of Ultrathin, Functional MXene Films. ACS Applied Materials & Interfaces. 11, 32320-32327 (2019)
    21 T. Yun, H. Kim, A. Iqbal, Y. S. Cho, G. S. Lee, M.-K. Kim, S. J. Kim, D. Kim, Y. Gogotsi, S. O. Kim, and C. M. Koo, Electromagnetic Shielding of Monolayer MXene Assemblies. Advanced Materials. 32, 1906769 (2020)
    22 R. Li, X. Ma, J. Li, J. Cao, H. Gao, T. Li, X. Zhang, L. Wang, Q. Zhang, G. Wang, C. Hou, Y. Li, T. Palacios, Y. Lin, H. Wang, and X. Ling, Flexible and high-performance electrochromic devices enabled by self-assembled 2D TiO2/MXene heterostructures. Nature Communications. 12, 1587 (2021)
    23 Z. R. Liu, Y. L. Zhang, Y. X. Song, Y. Lu, T. Liu, and J. C. Zhang, A wearable 3D pressure sensor based on electrostatic self-assembly MXene/chitosan sponge and insulating PVP spacer. Nanotechnology. 34, (2023)
    24 T. D. Chen, J. Q. Wang, X. Z. Wu, Z. P. Li, and S. R. Yang, Ethanediamine induced self-assembly of long-range ordered GO/MXene composite aerogel and its piezoresistive sensing performances. Applied Surface Science. 566, (2021)
    25 M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. J. Niu, M. Heon, L. Hultman, Y. Gogotsi, and M. W. Barsoum, Two-Dimensional Nanocrystals Produced by Exfoliation of Ti<sub>3</sub>AlC<sub>2</sub>. Advanced Materials. 23, 4248-4253 (2011)
    26 M. Naguib, O. Mashtalir, J. Carle, V. Presser, J. Lu, L. Hultman, Y. Gogotsi, and M. W. Barsoum, Two-Dimensional Transition Metal Carbides. Acs Nano. 6, 1322-1331 (2012)
    27 S. Ling, C. Zhang, C. Ma, Y. Li, and Q. Zhang, Emerging MXene-Based Memristors for In-Memory, Neuromorphic Computing, and Logic Operation. Advanced Functional Materials. 33, 2208320 (2023)
    28 T. S. Mathis, K. Maleski, A. Goad, A. Sarycheva, M. Anayee, A. C. Foucher, K. Hantanasirisakul, C. E. Shuck, E. A. Stach, and Y. Gogotsi, Modified MAX Phase Synthesis for Environmentally Stable and Highly Conductive Ti3C2 MXene. Acs Nano. 15, 6420-6429 (2021)
    29 C. Qiao, H. Wu, X. Xu, Z. Guan, and W. Ou-Yang, Electrical Conductivity Enhancement and Electronic Applications of 2D Ti3C2Tx MXene Materials. Advanced Materials Interfaces. 8, 2100903 (2021)
    30 B. J. Miao, T. Bashir, H. L. Zhang, T. Ali, S. Raza, D. L. He, Y. Liu, and J. B. Bai, Impact of various 2D MXene surface terminating groups in energy conversion. Renewable & Sustainable Energy Reviews. 199, (2024)
    31 Y. H. Li, J. Xie, R. F. Wang, S. G. Min, Z. W. Xu, Y. J. Ding, P. C. Su, X. M. Zhang, L. Y. Wei, J. F. Li, Z. Q. Chu, J. Y. Sun, and C. Huang, Textured Asymmetric Membrane Electrode Assemblies of Piezoelectric Phosphorene and Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXene Heterostructures for Enhanced Electrochemical Stability and Kinetics in LIBs. Nano-Micro Letters. 16, (2024)
    32 S. Kajiyama, L. Szabova, K. Sodeyama, H. Iinuma, R. Morita, K. Gotoh, Y. Tateyama, M. Okubo, and A. Yamada, Sodium-Ion Intercalation Mechanism in MXene Nanosheets. Acs Nano. 10, 3334-3341 (2016)
    33 Q. Yan, R. J. Ding, P. Y. Li, H. W. Zheng, Z. Chen, J. H. Xiong, Z. L. Liu, X. Zhao, F. H. Xue, L. L. Xu, H. X. Lian, S. Y. Du, Z. G. Tang, Q. Y. Peng, and X. D. He, Thermochromic Janus Membranes with Dynamic Solar Modulation toward Sustainable and High-Efficiency Solar-to-Thermal Intelligent Management. Acs Sustainable Chemistry & Engineering. 12, 7487-7498 (2024)
    34 J. B. Su, Y. N. Xie, P. K. Zhang, R. Yang, B. L. Wang, H. Zhao, Y. Y. Xu, X. L. Lin, J. Shi, and C. B. Wang, Janus MXene-based photothermal membrane for efficient and durable water evaporation. Desalination. 566, (2023)
    35 D. C. Tan, N. Sun, L. Chen, J. Y. Bu, and C. M. Jiang, Piezoelectricity in Monolayer and Multilayer Ti<sub>3</sub>C<sub>2</sub>Tx MXenes: Implications for Piezoelectric Devices. Acs Applied Nano Materials. 5, 1034-1046 (2022)
    36 D. C. Tan, C. M. Jiang, N. Sun, J. J. Huang, Z. Zhang, Q. X. Zhang, J. Y. Bu, S. Bi, Q. L. Guo, and J. H. Song, Piezoelectricity in monolayer MXene for nanogenerators and piezotronics. Nano Energy. 90, (2021)
    37 K. Arole, J. W. Blivin, S. Saha, D. E. Holta, X. Zhao, A. Sarmah, H. Cao, M. Radovic, J. L. Lutkenhaus, and M. J. Green, Water-dispersible Ti3C2Tz MXene nanosheets by molten salt etching. iScience. 24, 103403 (2021)
    38 L. Liu, M. Orbay, S. Luo, S. Duluard, H. Shao, J. Harmel, P. Rozier, P.-L. Taberna, and P. Simon, Exfoliation and Delamination of Ti3C2Tx MXene Prepared via Molten Salt Etching Route. ACS Nano. 16, 111-118 (2022)
    39 A. Thakur, B. S. N. Chandran, K. Davidson, A. Bedford, H. Fang, Y. Im, V. Kanduri, B. C. Wyatt, S. K. Nemani, V. Poliukhova, R. Kumar, Z. Fakhraai, and B. Anasori, Step-by-Step Guide for Synthesis and Delamination of Ti<sub>3</sub>C<sub>2</sub>T<i><sub>x</sub></i> MXene. Small Methods. 7, (2023)
    40 X. Zhao, A. Vashisth, J. W. Blivin, Z. Tan, D. E. Holta, V. Kotasthane, S. A. Shah, T. Habib, S. Liu, J. L. Lutkenhaus, M. Radovic, and M. J. Green, pH, Nanosheet Concentration, and Antioxidant Affect the Oxidation of Ti3C2Tx and Ti2CTx MXene Dispersions. Advanced Materials Interfaces. 7, 2000845 (2020)
    41 Y. T. Guo, S. Jin, L. B. Wang, P. G. He, Q. K. Hu, L. Z. Fan, and A. G. Zhou, Synthesis of two-dimensional carbide Mo<sub>2</sub>CT<sub>x</sub> MXene by hydrothermal etching with fluorides and its thermal stability. Ceramics International. 46, 19550-19556 (2020)
    42 M. Wu, Y. He, L. B. Wang, Q. X. Xia, and A. G. Zhou, Synthesis and electrochemical properties of V2C MXene by etching in opened/closed environments. Journal of Advanced Ceramics. 9, 749-758 (2020)
    43 M. Ghidiu, M. R. Lukatskaya, M.-Q. Zhao, Y. Gogotsi, and M. W. Barsoum, Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature. 516, 78-81 (2014)
    44 A. Lipatov, M. Alhabeb, M. R. Lukatskaya, A. Boson, Y. Gogotsi, and A. Sinitskii, Effect of Synthesis on Quality, Electronic Properties and Environmental Stability of Individual Monolayer Ti3C2 MXene Flakes. Advanced Electronic Materials. 2, 1600255 (2016)
    45 M. Alhabeb, K. Maleski, B. Anasori, P. Lelyukh, L. Clark, S. Sin, and Y. Gogotsi, Guidelines for Synthesis and Processing of Two-Dimensional Titanium Carbide (Ti3C2Tx MXene). Chemistry of Materials. 29, 7633-7644 (2017)
    46 K. R. G. Lim, M. Shekhirev, B. C. Wyatt, B. Anasori, Y. Gogotsi, and Z. W. Seh, Fundamentals of MXene synthesis. Nature Synthesis. 1, 601-614 (2022)
    47 T. Li, L. Yao, Q. Liu, J. Gu, R. Luo, J. Li, X. Yan, W. Wang, P. Liu, B. Chen, W. Zhang, W. Abbas, R. Naz, and D. Zhang, Fluorine-Free Synthesis of High-Purity Ti3C2Tx (T=OH, O) via Alkali Treatment. Angewandte Chemie International Edition. 57, 6115-6119 (2018)
    48 Y. Dall'Agnese, M. R. Lukatskaya, K. M. Cook, P.-L. Taberna, Y. Gogotsi, and P. Simon, High capacitance of surface-modified 2D titanium carbide in acidic electrolyte. Electrochemistry Communications. 48, 118-122 (2014)
    49 B. Zhang, J. Zhu, P. Shi, W. Wu, and F. Wang, Fluoride-free synthesis and microstructure evolution of novel two-dimensional Ti3C2(OH)2 nanoribbons as high-performance anode materials for lithium-ion batteries. Ceramics International. 45, 8395-8405 (2019)
    50 S. Yang, P. P. Zhang, F. X. Wang, A. G. Ricciardulli, M. R. Lohe, P. W. M. Blom, and X. L. Feng, Fluoride-Free Synthesis of Two-Dimensional Titanium Carbide (MXene) Using A Binary Aqueous System. Angewandte Chemie-International Edition. 57, 15491-15495 (2018)
    51 M. Li, J. Lu, K. Luo, Y. Li, K. Chang, K. Chen, J. Zhou, J. Rosen, L. Hultman, P. Eklund, P. O. Å. Persson, S. Du, Z. Chai, Z. Huang, and Q. Huang, Element Replacement Approach by Reaction with Lewis Acidic Molten Salts to Synthesize Nanolaminated MAX Phases and MXenes. Journal of the American Chemical Society. 141, 4730-4737 (2019)
    52 V. Kamysbayev, A. S. Filatov, H. Hu, X. Rui, F. Lagunas, D. Wang, R. F. Klie, and D. V. Talapin, Covalent surface modifications and superconductivity of two-dimensional metal carbide MXenes. Science. 369, 979-983 (2020)
    53 J. Halim, M. R. Lukatskaya, K. M. Cook, J. Lu, C. R. Smith, L.-Å. Näslund, S. J. May, L. Hultman, Y. Gogotsi, P. Eklund, and M. W. Barsoum, Transparent Conductive Two-Dimensional Titanium Carbide Epitaxial Thin Films. Chemistry of Materials. 26, 2374-2381 (2014)
    54 C. Xu, L. Wang, Z. Liu, L. Chen, J. Guo, N. Kang, X.-L. Ma, H.-M. Cheng, and W. Ren, Large-area high-quality 2D ultrathin Mo2C superconducting crystals. Nature Materials. 14, 1135-1141 (2015)
    55 M.-Y. Liu, C.-Z. Hang, X.-F. Zhao, L.-Y. Zhu, R.-G. Ma, J.-C. Wang, H.-L. Lu, and D. W. Zhang, Advance on flexible pressure sensors based on metal and carbonaceous nanomaterial. Nano Energy. 87, 106181 (2021)
    56 C. Ma, M. G. Ma, C. L. Si, X. X. Ji, and P. B. Wan, Flexible MXene-Based Composites for Wearable Devices. Advanced Functional Materials. 31, (2021)
    57 Y. Guo, M. Zhong, Z. Fang, P. Wan, and G. Yu, A Wearable Transient Pressure Sensor Made with MXene Nanosheets for Sensitive Broad-Range Human–Machine Interfacing. Nano Letters. 19, 1143-1150 (2019)
    58 L. Li, J. Pan, L. Chang, Z. Liu, G. Wu, and Y. Hu, A MXene heterostructure-based piezoionic sensor for wearable sensing applications. Chemical Engineering Journal. 482, 148988 (2024)
    59 S. Chen, Y. Dong, S. Ma, J. Ren, X. Yang, Y. Wang, and S. Lü, Superstretching MXene Composite Hydrogel as a Bidirectional Stress Response Thixotropic Sensor. ACS Applied Materials & Interfaces. 13, 13629-13636 (2021)
    60 Y. Chang, L. Wang, R. Li, Z. Zhang, Q. Wang, J. Yang, C. F. Guo, and T. Pan, First Decade of Interfacial Iontronic Sensing: From Droplet Sensors to Artificial Skins. Advanced Materials. 33, 2003464 (2021)
    61 R. Qin, X. Li, M. Hu, G. Shan, R. Seeram, and M. Yin, Preparation of high-performance MXene/PVA-based flexible pressure sensors with adjustable sensitivity and sensing range. Sensors and Actuators A: Physical. 338, 113458 (2022)
    62 R. stru¨mpler, and J. Glatz-Reichenbach, FEATURE ARTICLE Conducting Polymer Composites. Journal of Electroceramics. 3, 329-346 (1999)
    63 Z. Fan, L. Zhang, Q. Tan, X. Yao, B. Lin, Y. Wang, and J. Xiong, Wearable pressure sensor based on MXene/single-wall carbon nanotube film with crumpled structure for broad-range measurements. Smart Materials and Structures. 30, 035024 (2021)
    64 J. Yang, H. Li, J. Cheng, T. He, J. Li, and B. Wang, Nanocellulose intercalation to boost the performance of MXene pressure sensor for human interactive monitoring. Journal of Materials Science. 56, 13859-13873 (2021)
    65 L. Chen, J. Feng, T. Li, X. Li, and J. Zhang, High-Tactile Sensitivity of Piezoresistive Sensors With a Micro-Crack Structure Induced by Thin Film Tension. IEEE Electron Device Letters. 40, 1519-1521 (2019)
    66 S. Uzun, S. Seyedin, A. L. Stoltzfus, A. S. Levitt, M. Alhabeb, M. Anayee, C. J. Strobel, J. M. Razal, G. Dion, and Y. Gogotsi, Knittable and Washable Multifunctional MXene-Coated Cellulose Yarns. Advanced Functional Materials. 29, 1905015 (2019)
    67 M. Ren, Z. Sun, M. Zhang, X. Yang, D. Guo, S. Dong, R. Dhakal, Z. Yao, Y. Li, and N. Y. Kim, A high-performance wearable pressure sensor based on an MXene/PVP composite nanofiber membrane for health monitoring. Nanoscale Advances. 4, 3987-3995 (2022)
    68 L. Gao, Weihao Zheng et al.: Stretchable Iontronic Pressure Sensor Array with Low Crosstalk and High Sensitivity for Epidermal Monitoring. IEEE Electron Device Letters. PP, (2023)
    69 L. Gao, M. Wang, W. Wang, H. Xu, Y. Wang, H. Zhao, K. Cao, D. Xu, and L. Li, Highly Sensitive Pseudocapacitive Iontronic Pressure Sensor with Broad Sensing Range. Nano-Micro Letters. 13, 140 (2021)
    70 R. D. King-Smith, and D. Vanderbilt, Theory of polarization of crystalline solids. Physical Review B. 47, 1651-1654 (1993)
    71 W. Cai, J. Wang, Y. He, S. Liu, Q. Xiong, Z. Liu, and Q. Zhang, Strain-Modulated Photoelectric Responses from a Flexible α-In2Se3/3R MoS2 Heterojunction. Nano-Micro Letters. 13, 74 (2021)
    72 J. Qi, X. Qian, L. Qi, J. Feng, D. Shi, and J. Li, Strain-Engineering of Band Gaps in Piezoelectric Boron Nitride Nanoribbons. Nano Letters. 12, 1224-1228 (2012)
    73 W. B. Li, and J. Li, Piezoelectricity in two-dimensional group-III monochalcogenides. Nano Research. 8, 3796-3802 (2015)
    74 J. Tan, Y. Wang, Z. Wang, X. He, Y. Liu, B. Wang, M. I. Katsnelson, and S. Yuan, Large out-of-plane piezoelectricity of oxygen functionalized MXenes for ultrathin piezoelectric cantilevers and diaphragms. Nano Energy. 65, 104058 (2019)
    75 W. Wu, L. Wang, Y. Li, F. Zhang, L. Lin, S. Niu, D. Chenet, X. Zhang, Y. Hao, T. F. Heinz, J. Hone, and Z. L. Wang, Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics. Nature. 514, 470-474 (2014)
    76 W. Ma, J. Lu, B. Wan, D. Peng, Q. Xu, G. Hu, Y. Peng, C. Pan, and Z. L. Wang, Piezoelectricity in Multilayer Black Phosphorus for Piezotronics and Nanogenerators. Advanced Materials. 32, 1905795 (2020)
    77 C. M. Jiang, L. J. Zeng, D. C. Tan, P. Yan, N. Sun, Q. L. Guo, Z. Zhang, Z. Y. Tao, C. C. Fang, R. A. Ji, H. J. Sun, and R. W. Xu, Piezoelectric behavior of single-layer oxidized-MXene for nanogenerators and piezotronics. Nano Energy. 114, (2023)
    78 S. Wang, H.-Q. Shao, Y. Liu, C.-Y. Tang, X. Zhao, K. Ke, R.-Y. Bao, M.-B. Yang, and W. Yang, Boosting piezoelectric response of PVDF-TrFE via MXene for self-powered linear pressure sensor. Composites Science and Technology. 202, 108600 (2021)
    79 K. Dong, X. Peng, J. An, A. C. Wang, J. Luo, B. Sun, J. Wang, and Z. L. Wang, Shape adaptable and highly resilient 3D braided triboelectric nanogenerators as e-textiles for power and sensing. Nature Communications. 11, 2868 (2020)
    80 Q. Yi, X. Pei, P. Das, H. Qin, S. W. Lee, and R. Esfandyarpour, A self-powered triboelectric MXene-based 3D-printed wearable physiological biosignal sensing system for on-demand, wireless, and real-time health monitoring. Nano Energy. 101, 107511 (2022)
    81 G. Prasad, S. A. Graham, J. S. Yu, H. Kim, and D.-W. Lee, Investigated a PLL surface-modified Nylon 11 electrospun as a highly tribo-positive frictional layer to enhance output performance of triboelectric nanogenerators and self-powered wearable sensors. Nano Energy. 108, 108178 (2023)
    82 G. Tian, W. L. Deng, D. Xiong, T. Yang, B. B. Zhang, X. R. Ren, B. L. Lan, S. Zhong, L. Jin, H. R. Zhang, L. Deng, and W. Q. Yang, Dielectric micro-capacitance for enhancing piezoelectricity via aligning MXene sheets in composites. Cell Reports Physical Science. 3, 13 (2022)
    83 C. Yu, J. Xu, L. Yang, M. Ye, Y. Ye, T. Li, Y. Zhang, Z. Zhang, H. Xu, H. Tan, G. Zhang, and H. Zhang, Self-driving flexible piezoresistive sensors integrated with enhanced energy harvesting sensor of ZnO/Ti3C2Tx nanocomposite based on 3D structure. Journal of Alloys and Compounds. 956, 170358 (2023)
    84 S. Zou, D. Li, C. He, X. Wang, D. Cheng, and G. Cai, Scalable Fabrication of an MXene/Cotton/Spandex Yarn for Intelligent Wearable Applications. ACS Applied Materials & Interfaces. 15, 10994-11003 (2023)
    85 L. Wang, M. Zhang, B. Yang, and J. Tan, Lightweight, Robust, Conductive Composite Fibers Based on MXene@Aramid Nanofibers as Sensors for Smart Fabrics. ACS Applied Materials & Interfaces. 13, 41933-41945 (2021)
    86 R. Thankappan, K. G. Vasanthakumari, and U. M. U. Sulthana, MXene-coated flexible PVDF membrane as wearable strain sensor. Journal of Materials Science-Materials in Electronics. 33, 24542-24549 (2022)
    87 Z. Yang, A. Liu, C. Wang, F. Liu, J. He, S. Li, J. Wang, R. You, X. Yan, P. Sun, Y. Duan, and G. Lu, Improvement of Gas and Humidity Sensing Properties of Organ-like MXene by Alkaline Treatment. ACS Sensors. 4, 1261-1269 (2019)
    88 M. C. Zhang, Y. Q. Wang, F. Gao, Y. Wang, X. Y. Shen, N. He, J. L. Zhu, Y. H. Chen, X. Wan, X. J. Lian, E. T. Hu, J. G. Xu, and Y. Tong, Formation of new MXene film using spinning coating method with DMSO solution and its application in advanced memristive device. Ceramics International. 45, 19467-19472 (2019)
    89 D. J. Yao, Z. H. Tang, L. Zhang, Z. G. Liu, Q. J. Sun, S. C. Hu, Q. X. Liu, X. G. Tang, and J. Y. Ouyang, A highly sensitive, foldable and wearable pressure sensor based on MXene-coated airlaid paper for electronic skin. Journal of Materials Chemistry C. 9, 12642-12649 (2021)
    90 Q. Yu, C. Su, S. Bi, Y. Huang, J. Li, H. Shao, J. Jiang, and N. Chen, Ti3C2Tx@nonwoven Fabric Composite: Promising MXene-Coated Fabric for Wearable Piezoresistive Pressure Sensors. ACS Applied Materials & Interfaces. 14, 9632-9643 (2022)
    91 J. Song, H. Chen, Y. Sun, and Z. Liu, Layered MXene Films via Self-Assembly. Small. 20, 2406855 (2024)
    92 M. Zhang, W. Yang, Z. Wang, H. Liu, R. Yin, C. Liu, and C. Shen, Highly compressible and thermal insulative conductive MXene/PEDOT:PSS@melamine foam for promising wearable piezoresistive sensor. Applied Physics Letters. 122, 043507 (2023)
    93 Y. Zhen, V. S. Reddy, B. Ramasubramanian, and S. Ramakrishna, Three-dimensional AgNps@Mxene@PEDOT:PSS composite hybrid foam as a piezoresistive pressure sensor with ultra-broad working range. Journal of Materials Science. 57, 21960-21979 (2022)
    94 X. Li, X. Li, T. Liu, Y. Lu, C. Shang, X. Ding, J. Zhang, Y. Feng, and F.-J. Xu, Wearable, Washable, and Highly Sensitive Piezoresistive Pressure Sensor Based on a 3D Sponge Network for Real-Time Monitoring Human Body Activities. ACS Applied Materials & Interfaces. 13, 46848-46857 (2021)
    95 Q. Yang, M. Z. Li, R. Chen, D. H. Gao, Z. Wang, C. J. Qin, W. J. Yang, H. Liu, and P. S. Zhang, Enhanced Mechanical Strength of Metal Ion-Doped MXene-Based Double-Network Hydrogels for Highly Sensitive and Durable Flexible Sensors. Acs Applied Materials & Interfaces. 15, 51774-51784 (2023)
    96 J. Fu, S. E. Taher, R. K. Abu Al-Rub, T. Zhang, V. Chan, and K. Liao, Engineering 3D-Architected Gyroid MXene Scaffolds for Ultrasensitive Micromechanical Sensing. Advanced Engineering Materials. 24, 2101388 (2022)
    97 W. Yuan, X. Y. Qu, Y. Lu, W. Zhao, Y. F. Ren, Q. Wang, W. J. Wang, and X. C. Dong, MXene-composited highly stretchable, sensitive and durable hydrogel for flexible strain sensors. Chinese Chemical Letters. 32, 2021-2026 (2021)
    98 B. Yang, L. Wang, J. Zhao, R. Pang, B. Yuan, J. Tan, S. Song, J. Nie, and M. Zhang, A Robust, Flexible, Hydrophobic, and Multifunctional Pressure Sensor Based on an MXene/Aramid Nanofiber (ANF) Aerogel Film. ACS Applied Materials & Interfaces. 14, 47075-47088 (2022)
    99 X. X. Wu, H. Liao, D. Ma, M. Y. Chao, Y. G. Wang, X. L. Jia, P. B. Wan, and L. Q. Zhang, A wearable, self-adhesive, long-lastingly moist and healable epidermal sensor assembled from conductive MXene nanocomposites. Journal of Materials Chemistry C. 8, 1788-1795 (2020)
    100 Z. Wang, Y. Liu, D. Zhang, K. Zhang, C. Gao, and Y. Wu, Tough, stretchable and self-healing C-MXenes/PDMS conductive composites as sensitive strain sensors. Composites Science and Technology. 216, 109042 (2021)
    101 O. N. Oliveira, Jr., L. Caseli, and K. Ariga, The Past and the Future of Langmuir and Langmuir–Blodgett Films. Chemical Reviews. 122, 6459-6513 (2022)
    102 H. Kim, J. Kee, R. Seo, Y. Lee, C. W. Ahn, and J. Koo, Large-Area 2D-MXene Nanosheet Assemblies Using Langmuir-Schaefer Technique: Wrinkle formation. Acs Applied Materials & Interfaces. 12, 42294-42301 (2020)
    103 Q. Zheng, W. H. Ip, X. Lin, N. Yousefi, K. K. Yeung, Z. Li, and J.-K. Kim, Transparent Conductive Films Consisting of Ultralarge Graphene Sheets Produced by Langmuir–Blodgett Assembly. ACS Nano. 5, 6039-6051 (2011)
    104 G. M. Whitesides, and B. Grzybowski, Self-Assembly at All Scales. Science. 295, 2418-2421 (2002)
    105 M. Mojtabavi, A. VahidMohammadi, K. Ganeshan, D. Hejazi, S. Shahbazmohamadi, S. Kar, A. C. T. van Duin, and M. Wanunu, Wafer-Scale Lateral Self-Assembly of Mosaic Ti3C2Tx MXene Monolayer Films. ACS Nano. 15, 625-636 (2021)
    106 E. O. Maina, P. P. Ni, K. Dembélé, D. Dragoe, A. Yassar, and F. Z. Bouanis, Self-Assembled Ti3C2TX MXene Thin Films for High-Performance Ammonia Sensors. Applied Surface Science. 672, (2024)
    107 T. Zhao, H. Wan, T. Zhang, and X. Xiao, Mechanism of the Terahertz Wave–MXene Interaction and Surface/Interface Chemistry of MXene for Terahertz Absorption and Shielding. Accounts of Chemical Research. 57, 2184-2193 (2024)
    108 A. Sikdar, P. Dutta, S. K. Deb, A. Majumdar, N. Padma, S. Ghosh, and U. N. Maiti, Spontaneous three-dimensional self-assembly of MXene and graphene for impressive energy and rate performance pseudocapacitors. Electrochimica Acta. 391, 138959 (2021)
    109 Y. Deng, T. Shang, Z. Wu, Y. Tao, C. Luo, J. Liang, D. Han, R. Lyu, C. Qi, W. Lv, F. Kang, and Q.-H. Yang, Fast Gelation of Ti3C2T MXene Initiated by Metal Ions. Advanced Materials. 31, 1902432 (2019)

    無法下載圖示 校內:2030-07-15公開
    校外:2030-07-15公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE