| 研究生: |
杜芳儀 Du, Fang-Yi |
|---|---|
| 論文名稱: |
以中孔洞碳材為基礎之複合電極材料於超級電容器的性能分析 Characterization on Capacitive Performance of Nanocomposite Electrode Based on Mesoporous Carbons |
| 指導教授: |
林弘萍
Lin, Hong-Ping |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 123 |
| 中文關鍵詞: | 二氧化釕 、超級電容器 、電極材料 、中孔洞碳材 |
| 外文關鍵詞: | Ruo2, ruthenium oxide, Hybrid Capacitors |
| 相關次數: | 點閱:144 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要分成三大研究主題,第一部分為系統性地測試與鑑定不同孔徑尺度的中孔洞碳材於超級電容性能的行為表現,並探討性能測試結果與材料結構之關係。第二部分是合成釕氧化物與中孔碳的複合電極材料,且對其作電化學測試與分析。第三部分則是以高分子明膠作為表面活化劑,合成各種不同材質與形態的空心狀材料。
第一部分:不同孔徑尺度中孔洞碳材於超級電容行為的測試與分析
本部分研究用明膠( gelatin )和酚甲醛樹脂為有機模板,藉由明膠的特殊性質,在適當條件下用簡易的常壓水熱法,合成不同孔徑尺度大小的中孔洞碳材(HSC)。此系列碳材配合循環伏安法、氮氣等溫吸附脫附量測、導電度測量結果做系統性的統整與分析,以及推論出碳材孔洞尺度對高速充放電時電容行為影響的可能機制做一個完整地探討。
由於在許多文獻研究中,碳材內部結構與孔洞大小的分佈情形決定了材料的超電容性能。和傳統活性碳材相比,中孔洞碳材由於孔洞尺度大,有利於高速充放電時的電解質離子的進出排列,因此於高功率密度的储能元件的應用上有很大的潛力。本研究以水熱時間的調控,合成一系列不同孔徑大小的中孔洞碳材,其孔徑大小尺度從2.0~11.0 nm,隨著水熱時間的增加而上升。此系列碳材以循環伏安法測試結果得知,水熱兩天的碳材樣品(HT-2-d)所顯示出的電容特性最好,以掃描速率25 mV/s~3000 mV/s比較,其電容保留率高達71.2 %。並且配合導電度量測、表面積量測的結果顯示,水熱時間對此系列碳材表面積、導電度的影響不大,因此推測碳材孔洞大小以及大孔洞的使用程度為決定超電容性能主要因素。
第二部分:製備二氧化釕/中孔洞碳材複合電極材料及其電容行為分析與測試
本部分研究以簡易的水熱法製備氧化釕/中孔洞碳材複合電極材料,以大幅提升中孔洞碳材的能量密度。由循環伏安的測試結果,氧化釕/中孔洞碳材複合材料(RuO2@SK carbon),在擔載了25.0 %的二氧化釕後,在掃描速率25 mV/s的條件下,整體比電容值提升至原來的四倍,二氧化釕的使用率更高達554.0 Fg-1,於功率密度上亦有很好的表現,在25 mV/s~1000 mV/s的掃描速率範圍,其電容保留率高達46.2 %。此外,由實驗結果發現載體的形態與孔徑大小為決定電容效能的重要關鍵。由上述結果顯示,以水熱法合成的氧化釕/中孔洞碳材複合電極材料不但兼具了能量密度與功率密度,其優異的儲能特性極具商業化的潛能。
第三部分:以高分子明膠為表面活化劑合成不同材質與型態的空心狀材料
本研究以硬模板法合成不同材質與形態的空心狀材料。而硬模板法製程中,最困難的步驟在於將目的產物的前驅物與硬模板自身結合。有別於以往研究繁複的表面修飾步驟,本部分實驗採用明膠高分子為模板表面活化劑,利用明膠的特殊性質,於水溶液系統中活化多種模板表面,突破了載體必須經由繁瑣的化學修飾才能與目標物結合的瓶頸,成功地合成出不同形態的奈米級空心狀孔洞氧化矽材料。此種改良程序不但大幅簡化了實驗流程,並且於合成過程中全程在水溶液環境下操作,因此產物於一致性、分散度上都優於以往研究的成果。
There are three major topics discussed in this thesis. In the first part, mesoporous carbons of different pore size were synthesized. The effect of the pores size and on the supercapacitor characteristics were investigated systematically by means of cyclic voltammetry. In the second part, electrode nanocomposite materials of ruthenium oxide@ mesoporous carbons were synthesized and characterized its electrochemical behavior. The third part is to prepare hollow-shape materials of various morphologies, which used gelatin as surface active agent.
Part I:Investigate the pore size effect on capacitive performance based on mesoporous carbon materials
Mesoporous carbons with high surface area and large pore size demonstrate potential application in high-power supercapacitors. It is also well known that the key factor of capacitive performance directly depends on pore size of carbon materials. To investigate the correlation between the pore size and capacitive behaviour of carbon materials, we used the Gelatin-PR620 blending method to synthesize hollow-sphere mesoporous carbons(HSC) with various pore size which can control by hydrothermal treatment at 1 atm, 100℃ condition. The pore width of HSC, ranged from 2.8 to 12nm, have notable increment as hydrothermal time extended. The capacitive performance of HSC with hydrothermal treatment was significantly improved due to the large pore size, which enable ions to pass through easily at high charge/discharge state. The HSC with hydrothermal treatment for 2 days exhibit ideal capacitive property which of capcative performance was 71.2 % obtained from the CV charaterization between the scan rate 50mvs-1 and 3000mvs-1. Moreover, surface area and condicitivity of HSCs are not directly relative to the hydrothermal time.
The proe size of mesoporous carbon and utilation of macropore might be the key factor to decide the performance of supcapacitor behaviour.
Part II:Synthesize RuO2@silk-like carbon composite in supercapacitor application.
In order to promote the SC value (or energy density) in real application, RuO2@silk-like carbon composite materials were synthesized easily via hydrothermal treatment rather than traditional incorporation method. According to TGA analysis, the weight percentage of RuO2@silk-like carbon composite materials was about 25 %. The specific capacitive value of the RuO2@silk-like carbon composite was much high by four times than of the pristine carbon by means of cyclic voltmammetry. The utilation of ruthenium oxide of the comoposite was up to 544 Fg-1 at scan rate of 25 mVs-1. Besides, the capacitive retention of the RuO2@silk-like carbon composite were 46.2 % (ranged from the scan rate of 25 to 1000 mVs-1), demonstrating excellent prpoerity of high power density. Further, it was found that capacitive performance of composite greatly deponds on pore size and morphology of the pristine carbon. These results demonstrate the RuO2@silk-like carbon composite to be an excellent candidate for pracital application.
Part III:Preparation hollow-structure materials with gelatin by Hard-template method
In this study, a hard-template method was used to fabricate the hollow-structure materials with different morphology. However, in previous reports about hard-template method, the step of coating the templates with designed materials is generally regarded as the most challenging because it usually requires complicated surface modification process. Instead of typical and complicated surface modification, gelatine was used to active surface of which could simplfy the experiment process. Further, because this surface active method operated through the solution environment, the uniformity and dispersion of the products are significantly improved than that of reported.
參考文獻
(1) J. Bard and L. R. Faulkner, “Electrochemical Methods, Fundamentals and Applications”,
John Wiley & Sons, Singapore, (1980).
(2) D. R. Crow, “Principles and Applications of Electrochemistry”, 2ndE, Chapman and Hall,
Ltd. London, (1979).
(3) 胡啟章編著, “電化學原理與方法”, 五南圖書, (2002).
(4) 田福助編著,”電化學理論與應用 ”,第八版,新科技, (2001).
(5) D. Pletcher and F. C. Walsh, “Industrial Electrochemistry”, Chapman and Hall, Ltd. N.Y., (1990).
(6) 張光揮, “循環伏安置備含水釕銥氧化物於電化學電容器的應用”,國立中正大學化工研究所碩士論文”, (2000).
(7) A. M. Couper, D. Pletcher, and F. C. Walsh, Chem. Rev., 90, 837, (1990).
(8) G. D., T. F., T. S., J. Appl. Electrochem., 5, 203, (1975).
(9) H. D. Young, Physics, Addison-Wesley Publishing Co.: New York, (1992).
(10) J. S. Mattson, and Jr. H. B. Mark, Activated Carbon: Surface Chemistry and Adsorption
from Solution, Wiley-Vch : New York, (1998).
(11) C. H. Hamann, A. Hammnett, and W. Vielstich, Electrochemistry, Wiley-Vch: New York,
(1998).
(12) B.E. Conway, Electrochemical Supercapacitors: Scientific Fundamentals and Technological
Applications, Kluwer-Plenum, New York, (1999).
(13) M. Winter, R.J. Brodd, Chem. Rev., 104, 4245, (2004).
(14) A. Burke, Journal of Power Source, 91,37-50, (2000).
(15) S. Hadzi-Jordanov, H. Angerstein-Kozlowska, B.E. Conway, J. Electroanal Chem, 60, 359, (1975).
(16) S. Hadzi-Jordanov, H. Angerstein-Kozlowska, M. Vukovic, B.E. Conway, J.Electrochem. Soc., 125, 1471, (1978).
(17) A. Nishino, K. Naoi, “Technologies and Materials for Advanced EDLC”, CMC Publish Co., Tokyo (2006).
(18) Honda Fuel Cell Power FCX, http://world.honda.com/FuelCell/FCX/, (2004).
(19) B. V. Tilak and C.-P. Chen, J. Electrochem. Soc., 143, 3791-3799,(1996).
(20) K.-K. Liu and M. A. Anderson, J. Electrochem. Soc., 143, 124,(1996).
(21) V. Srinivasan and J. W. Weidner, J. Electrochem. Soc., 147, 880, (2000).
(22) J. P. Zheng and T. R. Jow, J. Electrochem. Soc., 142, L6- L8 ,(1995).
(23) V. Srinivasan and J. W. Weidner, J. Electrochem. Soc., 144, L210, (1997).
(24) C. Lin, J. A. Ritter, and B. N. Popov, J. Electrochem. Soc., 145, 4097, (1998).
(25) T.-C. Liu, W. G. Pell, B. E. Conway, Electrochim. Acta, 44, 2829, (1999).
(26) B. Messaoudi, S. Joiret, M. Keddam and H. Takenouti, Electrochim. Acta,, 46,2487,(2001).
(27) S. Trasatti, G. Buzzanca, J. Electroanal. Chem., 29, A1,( 1971).
(28) R. P. Simpraga and B. E. Conway, Electrochim. Acta, 43, 3045-3058,(1998).
(29) R. Otogawa, M. Morimitsu, and M. Matsunaga, Electrochimica Acta, 44, 1509-1513,
(1998).
(30) J. M. Marracino, F. Coeuret and S. Langlois, Electrochim. Acta, 32, 1303-1309, (1987).
(31) W. Sugimoto, H. Iwata, Y. Murakami, Y. Takasu, J. Electrochem. Soc., 151, A1181, (2004).
(32) 張國興, “應用於下世代超級電容器之奈米結構氧化釕的設計與剪裁”,國立中正大學 化工研究所博士論文”, (2007).
(33) C. T. Kresge, M. E. Leonowicz, Nature, 359, 710, (1992).
(34) J. S. Beck, J. C. Vartuli, W. J. Roth, J. Am. Chem. Soc., 114, 10834, (1992).
(35) C.-G. Wu, T. Bein, Chem. Mater., 6, 1109, (1994).
(36) Y. S. Lee, D. Surjadi, J. F. Rathman, Langmuir, 12, 6202, (1996).
(37) C. H. Ko, R. Raoo, J. Chem. Soc., Chem. Comunn., 2467,(1996).
(38) A. Sayari, Chem. Mater., 1996, 8, 1840, (1996).
(39) M. Hartmann, A. Popll, L. Kenvan, J. Phys. Chem., 100, 9906, (1996).
(40) B. Charkraborty, A. C. Pulikottil, B. Viswanathan, Catal. Lett., 39, 63,(1994).
(41) IUPAC Mannal of Symbols and terminology, Appendix 2, Pt. 1, Colloid and Surface Chemistry , Pure Appl. Chem.,31, 578,(1972).
(42) R. K. Iler, The Chemistry of Silica , John Wiley, New York, (1979).
(43) O. Huo, D. I. Margolese, U. Ciesla, D. G. Demuth, P. Feng, T. E. Gier,P. Sieger, A. Firouzi, B. F. Chmelka, F. Schuth, and G. D. Stukey .Chem. Mater., 6, 1176,(1994).
(44) H. P. Lin and C. Y. Mou, Acc. Chem. Rev., 35, 927, (2002).
(45) R. Schrieber and H. Gareis, “Gelatine handbook :theory and industrial practice”,
Wiley-VCH, (2007).
(46) T. Kyotani, Carbon, 38, 269, (2000).
(47) H. Tamai, T. Kakii, Y. Hirota, T. Kumamoto, H. Yasuda, Chem. Mater., 8, 454,(1996).
(48) W. Lu, D. D. L. Chung, Carbon, 35, 427, (1997).
(49) Z. Hu, M. P. Srinivasan, Y. Ni, Adv. Mater., 12, 62, (2000).
(50) S. Han, K. Sohn, T. Hyeon, Chem. Mater., 12, 3337, (2000).
(51) C. Lin, J. A. Ritter, B. N. Popov, J. Electrochem. Soc., 146, 3639,(1999).
(52) M. P. Stevens,” Polymer Chemistry An Introduction”, Oxford University Press, New York ,(1999).
(53) H. P. Lin, C. Y. Chang-Chien, C. Y. Tang, C. Y. Lin, Microporous and Mesoporous Materials, 93, 344-348, (2006).
(54) C. H. Hsu, H. P. Lin, C. Y. Tang and C. Y. Lin, Materials Chemistry and Physics, 2006,100, 112-116.
(55) Y. Han, S. Wu, Y. Sun, D. Li and F. S. Xiao, Chem. Mater.,14, 1144,(2002).
(56) Z. Zhang, Y. Han, L. Zhu, R. Wang, Y. Yu, S. Oiu, D. Zhao and F.S. Xiao, Angew. Chem. Int. Ed., 7, 1258,(2001).
(57) Y. Han, F. S. Xiao, S. Wu, Y. Sun, X. Meng, D. Li amd S. Lin, J. Phys. Chem. B, 105, 7963,(2001).
(58) C. C. Hu, C. C Wang, F. C. Wu, R. L. Tseng, Electrochimica Acta, 52, 2498–2505, (2007).
(59) F. C. Wua, R. L. Tseng, C. C. Hu, C. C. Wang, Journal of Power Sources, 144, 302–309, (2005).
(60) F. C. Wu, R. L. Tseng, C. C. Hu, C. C. Wang, Journal of Power Sources ,138, 351–
359,(2004).
(61) 黃志嘉, “奈米生醫技術”, 國立成功大學化學研究所博士論文, (2008).
(62) S. Yugang, Y. Xia, Anal. Chem. ,74, 5297, (2002).
(63) G. Dmitry, G. B. Shchukin, Angew. Chem. Int. Ed., 42, 4471, (2003).
(64) 林東毅,”奈米容器:具有可控制物質進出之奈米結構”, 國立成功大學化學研究所碩士論文,(2005).
(65) R. K. Iler , J. Colloid Interface Sci., 21, 569, (1966).
(66) F. Caruso, R. A. Caruso, H. Mohwald, Science, 282, 1111, (1998).
(67) Caruso, F. Adv. Mater., 13, 11, (2001).
(68) X. L. Xu, S. A. Asher, J. Am. Chem. Soc., 126, 7940, (2004).
(69) G. J. Guan, Z. P. Zhang, Z. Y. Wang, B. H. Liu, D. M. Gao, C. G. Xie, Adv. Mater.,19, 2370, (2007).
(70) X. W. Lou, L. A. Archer, Z. Yang, Adv. Mater. , 20 ,3927-4019 (2008).
(71) 林弘萍, ”比表面積(BET Specific Surface Area)分析法”, 國立成功大學化學系, (2008).
(72) A. Burke, Journal of Power Sources, 91, 37–50, (2000).
(73) D. W. Wang, F. Li, M. Liu, G. Q. Lu, H. M. Cheng, Angew. Chem. Int. Ed., 47, 373-376, (2008).
(74) K. H. Chang, C. C. Hu, C. Y. Chou, Chem. Mater. , 19, 2112-2119, (2007).
(75) C. C. Hu, K. H. Chang, M. C. Lin, Y.T. Wu, Nano Lett., Vol. 6, No. 12, (2006).
(76) B. J. Lee, S.R. Sivakkumar, J. M. Ko, J. H. Kim, S. M. Jo, D. Y. Kim, Journal of Power Sources, 168, 546–552, (2007).
(77) H. F. Li, R. Wamg, R. Cao, Microporous and Mesoporous Materials, 111, 32–38, (2008).
(78) C. C. Hu, W. C. Chen, K. H Chang, Journal of The Electrochemical Society, 151(2), A281
-A290 , (2004).