| 研究生: |
洪一力 Hung, Yi-Li |
|---|---|
| 論文名稱: |
流過渠道內鈍頭平皮之紊流場與熱傳之數值模擬 Numerical Simulation of Turbulent Flow and Heat Transfer over a Blunt Flat Plate in a Channel |
| 指導教授: |
楊玉姿
Yang, Yu-Tzu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 102 |
| 中文關鍵詞: | 鈍頭平板 、分離與再接觸點流場 、熱傳 |
| 外文關鍵詞: | Blunt Flat Plate, Separated and Reattached Flow, Heat Transfer |
| 相關次數: | 點閱:80 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文主要根據Yanaoka (2002)所發表的層流流過方管內鈍頭平板之的數值計算擴展成紊流的數值計算並採用Djilali (1991)實驗數據來分析穩態、二維、紊流流場與熱傳的數值模擬以驗證理論模式之可行性。本文紊流統御方程式乃是以控制體積法為基礎,配合有限差分法及冪次法則來離散成差分方程式。對於紊流的結構則是以 紊流模式配合牆函數來描述。以 SIMPLE 運算法則求解壓力-速度結合的問題。
本文研究的參數為雷諾數(Re = 6870、11700、17900)、固體形狀比BR (BR = 0.1、0.15)以及鈍頭平板的表面温度(Ts = 343K、353K、363K)。數值模擬結果顯示,在所研究的雷諾數範圍內,再接觸點長度的預測值與實驗值誤差在10 %內,再接觸點長度隨著雷諾數的增加而增加。在迴流區內的流場形成三維的特性,本文所預測的平均流場與實驗值相當吻合。當雷諾數增加,在側壁(side wall)附近的渦漩漸向下游移動,此渦漩結構對於熱傳有主要的影響。
This study presents the Numerical Simulation of Turbulent Flow and Heat Transfer Over a Blunt Flat Plate in a Channel, based on the experiment results of Djilali (1991) and extension of the laminar flow calculation of Yanaoka (2002) to the turbulent flow. The numerical simulation of steady, two-dimensional, turbulent flow and heat transfer is adopted to test the accuracy of the theoretical model. The turbulent-governing equations are resolved by a Control-Volume based finite-difference method with power-law scheme, and the well-known turbulence model and its associate wall function to describe the turbulent structure. The SIMPLE algorithm is adopted to solve the pressure – velocity coupling.
The parameters studied include the Reynolds number (Re = 6870, 11700, 17900), Solid blockage ratio BR (BR = 0.1, 0.15) and surface temperature of blunt flat plate (Ts = 343K、353K、363K). The numerical calculations indicate that reattachment length Xr increases with an increase of Reynolds number in the range studied of Reynolds number, the error of the reattachment length is with in 10 % comparing with the experimental results. The flow in the recirculation region becomes three–dimensional characteristics. The predicted mean flow field is found to be in good agreement with wall grows to the downstream with an increase of Reynolds number. This vortex structure has great effects upon heat transfer.
Acharya S., Dutta S., Myrum T.A. and Baker R.S., “ Periodically developed flow and heat transfer in a ribbed duct ”, Int, J. Heat Mass Transfer, Vol. 36, No. 8, pp. 2069-2082, 1993.
Cherry, N. J., Hillier, R., and Latour, M. E. M. P., “Unsteady Measurement in a Separated and Reattaching Flow,” Journal of Fluid Mechanics, Vol. 144, pp. 13-46, 1984.
Djilaii, N., and Gartshoew, I. S., “Turbulent Flow around a Bluff Rectangular plate. Part I: Experimental Investigation,” Journal of Fluids Engineering, Vol. 113, pp. 51-59, 1991.
Djilaii, N., “Forced Laminar Convection in an Array of Stacked Plates,” Numerical Heat Transfer, Part A, Vol. 25, pp.393-408, 1994.
Goldstein, R. J., and Karni, J., “The Effect of a wall Boundary Layer on Local Mass Transfer From a Cylinder in Crossflow,” International Journal of Heat and Mass Transfer, Vol. 106, pp. 260-267, 1984.
Issa R. I., A. D. Gosman, A. P. Watkins, “The computation of compressible and incompressible recirculating flows by a non-iterative implicit scheme,” J. Comp. Phys., Vol.62, pp.66-82, 1986.
Issa R. I., B. Ahmadi Befrui, K. Beshau, and A. D. Gosman, “Solution of the implicitly discretised reacting flow equations by operator-splitting,” J. Comp. Phys., Vol. 93, pp. 388-410, 1991.
Kiya, M., and Sasaki, K., “Structure of a Turbulent Separation Bubble,” Journal of Fluid Mechanics, Vol. 137, pp.275-281, 1983.
Lane, J. C., and Loehrke, R. I., “Leading Edge Separation from a Blunt Plate at Low Reynolds Number,” Journal of Fluids Engineering, Vol. 102, pp. 494-496, 1980.
Ota, T., and Kon, N.,”Heat Transfer in the Separated and Reattached Flow on a Blunt Flat,” Journal of Heat Transfer, Vol. 96, pp. 459-462, 1974.
Sakai, K., and Kiya, M., “Three-Dimensional Votex Structure in a Leading-Edge Separation Bubble at Moderate Reynolds Numbers,” Journal of Fluids Engineering, Vol. 113, pp.405-410, 1991.
Tafti, D K., and Vanka, S. P., “A Numerical Study of Flow Separation and Reattachment on a Blunt Plate,” Physics of Fluids A. 3. No. 7, pp. 1749-1759, 1991.
Tan, C. S., “A Multi-Domain Spectral Computation of Tree-Dimensional Laminar Horseshoe Vortex Flow Using Incompressible Navier-Stokes Equations,” Journal of Computational Physics, Vol. 85, pp. 130-158, 1989.
Tafti, D K., and Vanka, S. P., “A Three-Dimensional Numerical Study of Flow Separation and Reattachment on a Blunt Plate,” Physics of Fluids A. 3., No. 12, pp. 2887-2909, 1991.
Yanaoka, H., and Ota. T., “Three-Dimensional Numerical Simulation of Separation and Reattached Flow and Heat Transfer over Blunt Flat Plate”, Transactions of the Japan Society of Mechanical Engineers, Series B, 62B, pp. 1111-1117, 1996.
Yanaoka, H., and Ota. T., “Three-Dimensional Numerical Simulation of Separation and Reattached Flow and Heat Transfer over Blunt Flat Plate at High Reynolds Number,” Transactions of the Japan Society of Mechanical Engineers, Series B, 62B, pp. 3439-3445, 1996.
Rai, M. M., and Moin, P., “Direct Simulations of Turbulent Flow Using Finite-Difference Schemes,” Journal of Computational Physics, Vol. 96, pp. 15-53, 1991.
Patankar S.V., and Spalding D. B., “A calculation procedure for heat, mass and momentum in the three-dimensional parabolic flows,” Int. J. Heat Mass Transfer, Vol. 15, 1972.
STAR-CD Version 3.1 Theory Manual and User Guide, Computational Dynamics Limited, 1999.