簡易檢索 / 詳目顯示

研究生: 吳俊穎
Wu, Chun-Ying
論文名稱: 無孔徑光束筆微影製程及陣列式金屬奈米粒子之侷域性表面電漿共振研究
Apertureless Beam Pen Lithography with Applications on Metallic Nano-Particles Array and Localized Surface Plasmon Resonance
指導教授: 李永春
Lee, Yung-Chun
學位類別: 博士
Doctor
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 88
中文關鍵詞: 掃描式近場光學微影光束筆微影金屬奈米粒子侷域性表面電漿共振
外文關鍵詞: near-field scanning optical lithography, beam pen lithography, metallic nanoparticle, localized surface plasmon resonance
相關次數: 點閱:107下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出一結合無孔徑近場光學微影與光束筆微影之創新「無孔徑光束筆微影」。 首先,本文使用紫外光硬化樹脂模造技術製作陣列式金字塔結構,並以物理氣相沉積方式於金字塔結構表面沉積金屬薄膜。配合紫外光平行光源照射,使紫外光因金字塔結構造成局部增強之電磁場並穿透金字塔尖端披覆之金屬層,形成紫外光光束筆陣列,透過數值模擬與實驗驗證方式說明此無孔徑紫外光光束筆微影技術之可行性。
    此外,為了改善近場光學微影中正型光阻結構形貌受近場光學能量分布影響,形成一碗狀結構並限制其後續應用範圍,本文提出一種兩階段圖形轉移的方法來製作具垂直側壁之高深寬比光阻結構。首先,於基板上沉積一光阻/金屬/光阻堆疊的三明治結構,利用近場光學微影定義最上層的薄膜光阻,使其成為一蝕刻遮罩。利用此一遮罩進行中間金屬層之蝕刻,完成第一階段之圖形轉移,並藉由微影及蝕刻參數的調整,達到控制線寬的目的。接著,利用蝕刻完成之金屬層作為第二階段圖形轉移之蝕刻遮罩,進行底層厚膜光阻的非等向性蝕刻,利用乾式蝕刻中高蝕刻選擇比之特性,製作具垂直側壁之高深寬比光阻奈米結構。
    最後,本文建立一套五軸奈米定位平台系統,搭配上述無孔徑光束筆微影與兩階段圖形轉移技術,可以進行多重定位的曝光,最後成功以金屬舉離製程製作具有特殊規則排列之金奈米粒子,其最小線寬約250 nm。藉由實驗量測及有限元素法數值模擬其穿透率光譜及電磁場分佈,探討不同間距之金奈米粒子陣列的侷域性表面電漿共振現象。

    This dissertation presents a new type of apertureless beam pen near-field photolithography. An array of polyurethane acrylate (PUA) pyramidal microstructures fully coated with a metal layer is illuminated by a traditional ultraviolet (UV) lamp to generate an array of UV beam pens over a large patterning area for realizing apertureless beam pen lithography. Experimental results show that significant UV energy can pass through the apex of a fully metal-coated PUA pyramid even though the thickness of the metallic coating exceeded the penetration depth of UV light. Both depth and the full-width-at-half-magnitude (FWHM) of patterned photoresist (PR) nanostructures increased with exposure dosage, implying that the patterned PR profiles are created by UV exposure rather than by physical imprinting. Finite-element simulation of the UV light intensity distribution near the apex of the pyramid and within the photoresist layer is carried out. Simulation results show that the energy concentration within the pyramids is significantly increased by approximately an order of magnitude, hence enhancing the UV energy passing through the fully metal-coated apex.
    The advantage of apertureless beam pen lithography is its easy implementation for large-area patterning with a high resolution and high throughput. However, the topography of patterned photoresist is strongly related to the distribution of the UV field and therefore the patterned positive-tone photoresist structures are inverted-Gaussian-shaped rather than having a steep sidewall. To resolve this issue, a two-stage pattern transfer process is proposed and developed in this dissertation to produce vertical-sidewall photoresist nanostructures. The basic concept is to use apertureless beam pen lithography to pattern a metallic hard mask, which is then used in the subsequent deep reactive ion etching process to form high-aspect-ratio photoresist nanostructures. The sub-micron feature size can be precisely controlled by optimizing the parameters of nanolithography and sputter-etching of metallic hard mask. Photoresist nanostructures with a high aspect-ratio can be easily achieved. This approach essentially overcomes the difficulties and limitation of Gaussian-shaped PR structures that are commonly encountered in near-field lithography, and allows rapid prototyping and maskless micro/nano-fabrication at reasonable cost.
    Finally, a desktop 5-DOF nano-positioning system is built-up to achieve multi-steps exposure with apertureless beam pen lithography. Following by two-stage pattern transfer and metal lift-off processes, arrayed gold nano-particles (AuNPs) with a minimize diameter of 250 nm and a thickness of 40 nm are successfully achieved. Several interparticle distances of AuNPs are achieved to demonstrate the ability of fabricating diversified arrangement of AuNPs by the developed exposure system over a large area. Both experimental results and numerical simulations are carried out to analysis the localized surface plasmon resonance phenomenon of multi-dipole interaction appeared in various samples fabricated by the developed apertureless beam pen nanolithography system.

    Abstract i Abstract (Chinese) iii Acknowledgement iv Table of Contents v List of Tables vii List of Figures viii Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Literature Review 3 1.3 Dissertation Overview 8 Chapter 2 Apertureless Beam Pen Lithography 10 2.1 Preparation of Fully Metallic Coated Polymer Micro-Pyramids Array 10 2.2 Experimental Results of Near-Field Photolithography 16 2.3 Numerical Simulations of Near-Field Photolithography 21 2.4 Summary 29 Chapter 3 Two-Stage Pattern Transfer Process 31 3.1 Experimental Setups 31 3.2 Experimental Results 33 3.3 Summary 43 Chapter 4 Arrayed Metallic Nano-Particles and Localized Surface Plasmon Resonance 44 4.1 Experimental Setups 45 4.2 Experimental Results 54 4.3 Optical Transmittance Measurements and Numerical Simulations 58 4.4 Summary 75 Chapter 5 Conclusions 77 5.1 Conclusion 77 5.2 Suggestion and Discussion 79 References 82

    [1] E. Hutter and J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Advanced Materials, vol. 16, pp. 1685-1706, 2004.
    [2] F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. V. Plessen, and F. Lederer, “On the use of localized plasmon polaritons in solar cells,” Physica Status Solidi (a), vol. 205, pp. 2844-2861, 2008.
    [3] B. Auguie and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Physical Review Letters, vol. 101, 143902, 2008.
    [4] F. Mafune, J. Y. Kohno, Y. Takeda, and T. Kondow, “Dissociation and aggregation of gold nanoparticles under laser irradiation,” Journal of Physical Chemistry, vol. 105, pp. 9050-9056, 2001.
    [5] S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” Journal of Applied Physics, vol. 101, 093105, 2007.
    [6] N. Felidj, J. Aubard, G. Levi, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, “Enhanced substrate-induced coupling in two-dimensional gold nanoparticle arrays,” Physical Review B, vol. 66, 245407, 2002.
    [7] J. Stodolka, D. Nau, M. Frommberger, C. Zanke, H. Giessen, and E. Quandt, “Fabrication of two-dimensional hybrid photonic crystals utilizing electron beam lithography,” Microelectronic Engineering, vol. 78–79, pp. 442-447, 2009.
    [8] Y. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonancesin gold nanoparticle arrays,” Applied Physics Letters, vol. 93, 181108, 2008.
    [9] Y. C. Lee and C. Y. Chiu, “Micro-/nano-lithography based on the contact transfer of thin film and mask embedded etching,” Journal of Micromechanics and Microengineering, vol. 18, 075013, 2008.
    [10] Y. Xia, J. A. Rogers, K. E. Paul, and G. M. Whitesides, “Unconventional methods for fabricating and patterning nanostructures,” Chemical Reviews, vol. 99, pp. 1823-1848, 1999.
    [11] W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, “Plasmonic Nanolithography,” Nano Letters, vol. 4, pp. 1085-1088, 2004.
    [12] L. Wang, S. M. Uppuluri, E. X. Jin, and X. Xu, “Nanolithography using high transmission nanoscale bowtie apertures,” Nano Letters, vol. 6, pp. 361-364, 2006.
    [13] N. Murphy-DuBay, L. Wang, and X. Xu, “Nanolithography using high transmission nanoscale ridge aperture probe,” Applied Physics A, vol. 93, pp. 881-884, 2008.
    [14] N. Murphy-DuBay, L. Wang, E. C. Kinzel, S. M. V. Uppuluri, and X. Xu, “Nanopatterning using NSOM probes integrated with high transmission nanoscale bowtie aperture,” Optics Express, vol. 16, pp. 2584-2589, 2008.
    [15] Y. Wang, W. Srituravanich, C. Sun, and X. Zhang, “Plasmonic nearfield scanning probe with high transmission,” Nano Letters, vol. 8, pp. 3041-3045, 2008.
    [16] S. Wegscheider, A. Kirsch, J. Mlynek, and G. Krausch, “Scanning near-field lithography,” Thin Solid Films, vol. 264, pp. 264-267, 1995.
    [17] A. Naber, H. Kock, and H. Fuchs, “High-resolution lithography with near-field optical microscopy,” Scanning, vol. 18, pp. 567-571, 1996.
    [18] S. Sun and G. J. Leggett, “Matching the resolution of electron beam lithography by scanning near-field photolithography,” Nano Letters, vol. 4, pp. 1381-1384, 2004.
    [19] P. K. Jain and M. A. El-Sayed, “Plasmonic coupling in noble metal nanostructures,” Chemical Physics Letters, vol. 487, pp. 153-164, 2010.
    [20] H. Tamaru, H. Kuwata, H. T. Miyazaki, and K. Miyano, “Resonant light scattering from individual Ag nanoparticles and particle pairs,” Applied Physics Letters, vol. 80, pp. 1826-1828, 2002.
    [21] W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Optics Communications, vol. 220, pp. 137-141, 2003.
    [22] P. K. Jain, W. Huang, and M. A. El-Sayed, “On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: a plasmon ruler equation,” Nano Letters, vol. 7, pp. 2080-2088, 2007.
    [23] K. H. Su, Q. H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Letters, vol. 3, pp. 1087-1090, 2003.
    [24] S. S. Acimovic, M. P. Kreuzer, M. U. Gonzalez, and R. Quidant, “Plasmon near-field coupling in metal dimers as a step toward single-molecule sensing,” Nano, vol. 3, pp. 1231-1237, 2009.
    [25] I. Romero, J. Aizpurua, G. W. Bryant, and F. J. G. de Abajo, “Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers,” Optics Express, vol. 14, pp. 9988-9999, 2006.
    [26] F. Huo, G. Zheng, X. Liao, L. R. Giam, J. Chai, X. Chen, W. Shim, and C. A. Mirkin, “Beam pen lithography,” Nature Nanotechnology, vol. 5, pp. 637-640, 2010.
    [27] H. Hu, J. Yeom, G. Mensing, Y. Chen, M. A. Shannon, and W. P. King, “Nano-fabrication with a flexible array of nano-apertures,” Nanotechnology, vol. 23, 175303, 2012.
    [28] Y. J. Chang and H. K. Huang, “Parallel multi-step nanolithography by nanoscale Cu-covered h-PDMS tip array,” Journal of Micromechanics and Microengineering, vol. 24, 095022, 2014.
    [29] X. Liao, K. A. Brown, A. L. Schmucker, G. Liu, S. He, W. Shim, and C. A. Mirkin, “Desktop nanofabrication with massively multiplexed beam pen lithography,” Nature Communications, vol. 4, 2103, 2013.
    [30] S. Bian, S. B. Zieba, W. Morris, X. Han, D. C. Richter, K. A. Brown, C. A. Mirkin, and A. B. Braunschweig, “Beam pen lithography as a new tool for spatially controlled photochemistry, and its utilization in the synthesis of multivalent glycan arrays,” Chemical Science, vol. 5, pp. 2023-2030, 2014.
    [31] Y. Z. Chen, C. Y. Wu, and Y. C. Lee, “Beam pen lithography based on arrayed polydimethylsiloxane (PDMS) micro-pyramids spin-coated with carbon black photo-resist,” Journal of Micromechanics and Microengineering, vol. 24, 045007, 2014.
    [32] Y. Z. Chen, C. Y. Wu, and Y. C. Lee, “Photolithographic patterning at sub-micrometer scale using a three-dimensional soft photo-mask with application on localized surface plasma resonance,” Optics Express, vol. 22, pp. 8376-8382, 2014.
    [33] L. Vaccaro, L. Aeschimann, U. Staufer, H. P. Herzig, and R. Dandliker, “Propagation of electromagnetic field in fully coated near-field optical probes,” Applied Physics Letters, vol. 83, pp. 584-586, 2003.
    [34] L. Aeschimann, T. Akiyama, U. Staufer, N. F. Derooij, L. Thiery, R. Eckert, and H. Heinzelmann, “Characterization and fabrication of fully metal-coated scanning near-field optical microscopy SiO2 tips,” Journal of Microscopy, vol. 209, pp. 182-187, 2003.
    [35] E. Descrovi, L. Vaccaro, W. Nakagawa, L. Aeschimann, U. Staufer, and H. P. Herzig, “Collection of transverse and longitudinal fields by means of apertureless nanoprobes with different metal coating characteristics,” Applied Physics Letters, vol. 85, pp. 5340-5342, 2004.
    [36] E. Descrovi, L. Vaccaro, L. Aeschimann, W. Nakagawa, U. Staaufer, and H. P. Herzig, “Optical properties of microfabricated fully-metal-coated near-field probes in collection mode,” Journal of the Optical Society of America A, vol. 22, pp. 1432-1441, 2005.
    [37] P. Tortora, E. Descrovi, L. Aeschimann, H. P. Herzig, and R. Dandliker, “Selective coupling of HE11 and TM01 modes into microfabricated fully metal-coated quartz probes,” Ultramicroscopy, vol. 107, pp. 158-165, 2007.
    [38] I. Kubicova, D. Pudis, J. Skriniarova, J. Kovac, J. Kovac Jr., J. Jakabovic, L. Suslik, J. Novak, and A. Kuzma, “2D irregular structure in the LED surface patterned by NSOM lithography,” Applied Surface Science, vol. 269, pp. 116-119, 2013.
    [39] I. Kubicova, D. Pudis, L. Suslik, and J. Skriniarova, “Spatial resolution of apertureless metal-coated fiber tip for NSOM lithography determined by tip-to-tip scan,” Optik, vol. 124, pp. 1971-1973, 2013.
    [40] F. Huo, Z. Zheng, G. Zheng, L. R. Giam, H. Zhang, and C. A. Mirkin, “Polymer Pen Lithography,” Science, vol. 321, pp. 1658-1660, 2008.
    [41] G. T. A. Kovacs, N. I. Maluf, and K. E. Petersen, “Bulk micromachining of silicon,” Proceedings of IEEE, vol. 86, pp. 1536-1551, 1998.
    [42] I. Barycka and I. Zubel, “Silicon anisotropic etching in KOH-isopropanol etchant,” Sensors and Actuators A-Physical, vol. 48, pp. 229-238, 1995.
    [43] K. R. Williams and R. S. Muller, “Etch Rates for Micromachining Processing,” Journal of Microelectromechanical Systems, vol. 5, pp. 256-269, 1996.
    [44] D. Qin, Y. Xia, and G. M. Whitesides, “Soft lithography for micro- and nanoscale patterning,” Nature Protocols, vol. 5, pp. 491-502, 2010.
    [45] J. Park, J. H. Park, E. Kim, C. W. Ahn, H. I. Jang, J. A. Rogers, and S. Jeon, “Conformable solid-index phase masks composed of high-aspect-ratio micropillar arrays and their application to 3D nanopatterning,” Advanced Materials, vol. 23, pp. 860-864, 2011.
    [46] J. Y. Kim, K. S. Park, Z. S. Kim, K. H. Baek, and L. M. Do, “Fabrication of low-cost submicron patterned polymeric replica mold with high elastic modulus over a large area,” Soft Matter, vol. 8, pp. 1184-1189, 2012.
    [47] P. J. Yoo, S. J. Choi, J. H. Kim, D. Suh, S. J. Baek, T. W. Kim, and H. H. Lee, “Unconventional patterning with a modulus-tunable mold: from imprinting to microcontact printing,” Chemistry of Materials, vol. 16, pp. 5000-5005, 2004.
    [48] http://www.minuta.co.kr/products/products_mold_template.html (Accessed July 31, 2015).
    [49] D. W. Lynch and W. R. Hunter, “Chromium (Cr),” in Handbook of Optical Constants of Solids II, E.D. Palik, ed. (Academic, 1991).
    [50] R. A. Norwood, and L. A. Whitney, “Rapid and accurate measurements of photoresist refractive index dispersion using the prism coupling method,” Proceedings of SPIE, vol. 2725, pp. 273-280, 1996.
    [51] D. F. Edwards, “Silicon (Si),” in Handbook of Optical Constants of Solids, E.D. Palik, ed. (Academic, 1985).
    [52] Z. M. Zhang, Nano/Microscale Heat Transfer, (McGraw-Hill, 2007), Chap. 8.
    [53] E. Lee, and J. W. Hahn, “The effect of photoresist contrast on the exposure profiles obtained with evanescent fields of nanoapertures,” Journal of Applied Physics, vol. 103, 083550, 2008.
    [54] E. Lee, and J. W. Hahn, “Modeling of three-dimensional photoresist profiles exposed by localized fields of high-transmission nano-apertures,” Nanotechnology, vol. 19, 275303, 2008.
    [55] Y. Kim, H. Jung, S. Kim, J. Jang, J. Y. Lee, and J. W. Hahn, “Accurate near-field lithography modeling and quantitative mapping of the near-field distribution of a plasmonic nanoaperture in a metal,” Optics Express, vol. 19, pp. 19296-19309, 2011.
    [56] W. Shim, A. B. Braunschweig, X. Liao, J. K. Lim, G. Zheng, and C. A. Mirkin, “Hard-tip, soft-spring lithography,” Nature, vol. 469, pp. 516-520, 2011.
    [57] J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature, vol. 455, pp. 376-379, 2008.
    [58] G. Dolling, M. Wegener, and S. Linden, “Realization of a three-functional-layer negative-index photonic metamaterial,” Optics Letters, vol. 32, pp. 551-553, 2007.
    [59] Z. Ku and S. R. J. Brueck, “Comparison of negative refractive index materials with circular, elliptical and rectangular holes,” Optics Express, vol. 15, pp. 4515-4522, 2007.
    [60] E. E. Moon, P. N. Everett, M. W. Meinhold, M. K. Mondol, and H. I. Smith, “Novel mask-wafer gap measurement scheme with nanometer-level detectivity,” Journal of Vacuum Science & Technology B, vol. 17, pp. 2698-2702, 1999.
    [61] E. E. Moon, L. Chen, P. N. Everett, M. K. Mondol, and H. I. Smith, “Interferometric-spatial-phase imaging for six-axis mask control,” Journal of Vacuum Science & Technology B, vol. 21, pp. 3112-3115, 2003.
    [62] X. Wen, L. M. Traverso, P. Srisungsitthisunti, X. Xu, and E. E. Moon, “High precision dynamic alignment and gap control for optical near-field nanolithography,” Journal of Vacuum Science & Technology B, vol. 31, 041601, 2013.

    下載圖示 校內:2020-08-17公開
    校外:2020-08-17公開
    QR CODE