| 研究生: |
程瑞琦 Chang, Rui-Chi |
|---|---|
| 論文名稱: |
含方形吸能結構結合的貴重設備包裝木箱於公路運輸時緊急剎車情境所衍生的動態碰撞模擬分析 Dynamic Crushing Response of Wooden Shipping Crate with Cubic Energy Absorption Elements Installed Subject to an Emergency Braking Scenario on the Highway Transportation |
| 指導教授: |
鄭泗滄
Jenq, Syh-Tsang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系碩士在職專班 Department of Aeronautics & Astronautics (on the job class) |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 77 |
| 中文關鍵詞: | 木箱 、吸能結構 、公路運輸 、動態碰撞 、有限元素分析 |
| 外文關鍵詞: | wooden shipping crate, cubic energy absorption elements, highway transportation, dynamic impact/crushing, finite elements analysis |
| 相關次數: | 點閱:82 下載:12 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文目的旨在測試外部有無安裝具吸能結構之木箱,內部適當包裝貨物後當遇緊急煞車,所受衝擊之表現。為能夠降低因煞車時撞擊而產生損傷之風險,將生活中使用於汽車、航空工業等之吸能結構,結合木箱進而達到保護箱內貴重設備,本文採用CNS規定常用木箱搭配以鋁合金AA6060T4為材料之吸能結構組合。
在動態數值分析部分,利用商業有限元素軟體LS-DYNA進行薄管元件結合木箱模型使用explicit solver模擬受軸向衝擊後之數值分析,邊界條件則參考美國國家公路交通安全管理局NHTSA貨物車輛之煞車系統的技術報告及美國汽車工程師協會SAE煞停距離,不同時速在乾燥或潮溼的路面透由計算可預估出大型貨車平均減速度,分析比較發現當受到碰撞時,在一般包裝用木箱上採用本研究所設計之方形吸能結構,測得木箱約可減少78%受力、能量衝擊及最大加速度,內部裝備承受G力則由最大62.36G降至約9.55G,即可滿足美軍要求精密儀器僅可承受15至24個G的易碎條件,降低裝備因運輸過程中導致損壞之風險因子。
The main purpose of this research is to study the shock-absorbing performance of a wooden crate with an aluminum alloy thin-walled tube installed on the outside after properly packing the equipments. The cubic energy absorption element such as aluminum thin tube is used as a buffer device to achieve energy absorption to keep wooden crate from damage, and protect high-priced military product inside of crate.
In the part of dynamic collision analysis, a commercial finite element software—LS-DYNA is used to combine thin tube elements with a wooden crate model, and use the explicit code to simulate the numerical analysis after being collided from axial impact. The boundary conditions refer to the NHTSA technical report and SAE journals, the average deceleration of large trucks can be estimated by calculation at different speeds and road conditions. After analysis and comparison, it is found that when a collision is received, the square energy-absorbing structure designed by this research is used on the wooden box for general packaging. It is measured that the force, energy impact and maximum acceleration of the wooden box can be reduced by about 78% When installed, the G force of the internal equipment can be reduced from a maximum of 62.36G to about 9.55G, which can meet the requirements of the US military (15 to 24 G), reducing the risk factor of equipment damage due to transportation.
[1] D. a. Panchratna, "Safety Systems for Satellite Transportation " 2011.
[2] 王松永, "木材物理學," 木材物理學, 2018.
[3] S. K. S. Suraj Bhat, Vinay Gupta, "Design Analysis of the Wooden Palanquin Used in Yamunotri Dham," IEEE Global Humanitarian Technology Conference (GHTC), 2019.
[4] 卓志隆, "木理傾斜角及含水率對木材壓縮強度之影響," 宜蘭技術學報, 2002.
[5] W. A. a. N. Jones, "DYNAMIC PROGRESSIVE BUCKLING OF CIRCULAR AND SQUARE TUBES " International Journal Impact Engineering, vol. 4, pp. P243-P270, 1986.
[6] W. A. T. Wierzbicki, "On the Crushing Mechanics of Thin-Walled Structures," Journal of Engineering Mechanics vol. 50, pp. P727-P734, 1983.
[7] D. Research, and Technology Turner-Fairbank Highway Research Center, "Manual for LS-DYNA Wood Material Model 143," FHWA-HRT-04-097, 2007.
[8] 邱元升, "應用內隱與外顯式有限元素法於車輛輪胎水漂性能及防撞結構安全防護之研究," Department of Aeronautics and Astronautics National Cheng Kung University Tainan, Taiwan, R.O.C., 2013.
[9] R. L. K. a. R. W. Radlinski, "NHTSA_Heavy Duty Vehicle Brake Capability of Hydraulically Braked Vehicle -l Volume I Technical Report," DOT HS 806 860, pp. P10-13、P51-52、P70-89, 1985.
[10] 李桃生, "國産造林木材應用於木構造建築," 行政院農業委員會林務局, 2014.10.22.
[11] M. K. a. A. Khennane, "Numerical Analysis of the Cutting Forces in Timber," Journal of Engineering Mechanics 140(3):523-530, 2014, doi: DOI: 10.1061/(ASCE)EM.1943-7889.0000671.
[12] J. E. W. David W. Green, and David E. Kretschmann, "Mechanical Properties of Wood," Wood handbook : wood as an engineering material, pp. 4-1~4-45, 1999.
[13] W. A. a. N. Jones, "DYNAMIC AXIAL CRUSHING OF SQUARE TUBE," International Journal Impact Engineering, vol. 2, pp. P179-P208, 1984.
[14] 曾彥維, "Top-hat 型薄管元件受軸向衝擊之動態行為研究," 國立成功大學航太所碩士論文, 2014.
[15] V. Gyliene, "Cowper-Symonds material deformation law application in material cutting process using LS-DYNA FE code," 8th European LS-DYNA Users’ Conference.
[16] 胡純逢, "薄管元件受軸向衝擊之動態行為研究," 國立成功大學航太所碩士論文, 2009.
[17] N.Jones, "structure impact," Cambridge University Press, UK, 1989.
[18] D. L. B. Jim Day, "Specification of Directional Depended Materials in LS-DYNA," Livemore software technology corporation, 2011.
[19] S. S. Julius Hanses, "Modeling the energy absorption characteristics of wood crash element," 12th International LS-DYNA Conference, 2019.
[20] H. H. H. Ghasemnejad, D. Marchant and A. Aboutorabi, "Energy Absorption of Thin-walled Corrugated Crash Box in Axial Crushing," SDHM, pp. P1-17, 2008.
[21] 吳俊賢、陳溢宏, "國內木質包裝材料之木箱及木棧板使用量分析," 林業論壇, 2018.
[22] MIL-STD-304C, PACKAGE CUSHIONING DESIGN, D. O. DEFENSE, 1997.
[23] S. E. M. S. Pirmohammad "Crushing behavior of new designed multi-cell members subjected to axial and oblique quasi-static loads," elsevier, 2016.
[24] 許新村、吳建勳、毛慶平, "大客車車身骨架接點擠壓分析模型建立與研究," 財團法人車輛研究測試中心.
[25] M. E. Gatt, "Brake System Design for Medium/Heavy Trucks to Meet FMVSS 105-75 Stopping Distance Requirements," SAE Transactions, pp. P375-378, 1978.
[26] CNS 10035, 木箱, Wooden Box For Export Packing, 經濟部標準檢驗局, 2018.
[27] TW 9-2320-C11-10, OPERATOR’S MANUAL FOR TRUCK, TRACTOR, LINE HAUL, U. S. O. America, 1997.