| 研究生: |
謝家康 Hsieh, Chia-Kang |
|---|---|
| 論文名稱: |
臨時建築的氣動式策略應用 Pneumatic Design Strategies for Temporary Architectural Applications |
| 指導教授: |
柳川肯
Yanagawa, Kane |
| 學位類別: |
碩士 Master |
| 系所名稱: |
規劃與設計學院 - 建築學系 Department of Architecture |
| 論文出版年: | 2023 |
| 畢業學年度: | 112 |
| 語文別: | 英文 |
| 論文頁數: | 108 |
| 中文關鍵詞: | 充氣構造 、氣動 、製造方法 、材料特性 |
| 外文關鍵詞: | Inflatable Structure, Pneumatic, Fabrication Method, Material Performance |
| 相關次數: | 點閱:51 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著人們對臨時建築的需求不斷增加,各式各樣的臨時構造開始出現在眾人面前,充氣構造也不例外。但是,現在的充氣構造與過去的充氣構造除了表層材料外其實並無差別。這個情況的可能原因是設計充氣構造的設計師們並沒有真正去思考氣體與充氣構造彼此之間的關係,導致充氣構造的發展停滯不前。因此,如何更好的利用氣體的特性-流動及其產生的動力,使充氣構造能有不同以往的變形機制是本研究要探討的問題。同時,利用這些特性的效果替充氣構造及臨時建築帶來更多的啟發,並且透過氣動式策略特有變形機制或效果來發展新的製造方法。
本研究將模擬當前普遍的機台之加工方式所能加工的紋路及材料的厚度差異來發展不同於既有充氣構造的氣動式策略。同時,透過研究結果顯示,即使是簡單的線條紋路搭配上了材料的厚度差異,也同樣能夠很好的利用氣動的方式來產生變形並且控制變形的效果。最後,將實驗結果應用於現實環境的設計來驗證這種透過利用氣體流動的特性所產生的變形效果。藉此驗證氣動式策略應用在充氣構造或臨時建築的設計,不僅能維持臨時建築快速且易搭建的特性,也能很好的說明如何利用氣動特性來應對現實狀況。同時,藉由此結果也能開啟對充氣構造或臨時建築的領域更多的想像,並利用此啟發更多的實際應用或發展。
The burgeoning demand for temporary architecture has spurred the creation of a diverse range of temporary structures, among them inflatable constructions. However, contemporary inflatable structures exhibit little deviation from their historical counterparts, save for advancements in materials and usage over several decades. This stagnation can be attributed, in part, to a deficiency in a comprehensive exploration of the intricate interplay between gas and inflatable structures by designers.
This research endeavors to address this issue by delving into how the unique characteristics of gases, such as their fluidity and pneumatic potential, can be harnessed to imbue inflatable structures with novel transformation mechanisms. In parallel, it aims to draw inspiration from these characteristics to further push the boundaries of inflatable structures and temporary architecture while also pioneering new fabrication techniques grounded in the inherent transformation mechanisms and effects of pneumatic strategies. The study involves simulating common manufacturing processes utilized in contemporary machinery, thereby developing pneumatic strategies distinct from conventional inflatable structures. These strategies are devised by considering variations in material thickness and departing from established patterns. The research findings underscore the effectiveness of even rudimentary linear patterns, when coupled with disparities in material thickness, in harnessing pneumatic methods to induce controlled transformations.
Furthermore, the application of these experimental findings in real-world scenarios substantiates the transformative effects achievable through the strategic utilization of pneumatic properties. This validation not only upholds the hallmark attributes of temporary structures, characterized by the swift and effortless assembly, but also demonstrates how pneumatic characteristics can be pragmatically employed to address real-world challenges. Consequently, this revelation stimulates boundless creativity within the realms of inflatable structures and temporary architecture, offering a wealth of inspiration for further applications and developments based on the outcomes of this study.
Ant Farm (1971). Inflatocookbook. Ant Farm, Massachusetts, MA.
B. Chabrowe (1974). On the Significance of Temporary Architecture. The Burlington Magazine, 116(856), 384-388+391.
Çisem Soylu (2019). Importance of Temporary Architecture and Permanence as an Obsolete Notion. International Journal of Structural and Civil Engineering Research, 8(3), 253-258, International Journal of Structural and Civil Engineering Research (IJSCER).http://www.ijscer.com/index.php?m=content&c=index&a=show&catid=154&id=468Glaeder & Ludwig (1972). The work of Frei Otto, New York: The Museum of Modern Art.
H. Sareen, U. Umapathi, P. Shin, Y. Kakehi, J. Ou, P. Maes, H. Ishii (2017, May). Printflatables: Printing Human-Scale, Functional and Dynamic Inflatable Objects. CHI '17: Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems, 3669-3680, Association for Computing Machinery, New York, NY
J. Ou, M. Skouras, N. Vlavianos, F. Heibeck, C. Chin-Yi, J. Peters, H. Ishii (2016, Oct). aeroMorph - Heat-sealing Inflatable Shape-change Materials for Interaction Design. the 29th ACM User Interface Software and Technology Symposium (UIST), 121-132.
L. Baker (2014). Temporary architecture. Braun Publishing, Salenstein.
M. Epstein-Mervis (2016, Mar 9). The Rise and Rise of Pop-Up Architecture. CURBED.
M. S. Ardekani (2016, Nov). Counterculture Architecture within Neo- Avantgarde Notion: Archigram and Droppers movements Concretization of Plug-in city ideas in Drop City[Istanbul Technical University, Faculty of Architecture Istanbul, TURKEY]
P. Jodidio (2011). Temporary Architecture Now! TASCHEN, Köln.
R. Kronenburg (2014). Architecture in Motion: The History and Development of Portable. Routledge, Oxfordshire, Oxon.
R. Kronenburg (1996). Portable Architecture. Elsevier/Architectural Press, Massachusetts, MA.
R. Kronenburg (2008). Portable Architecture: Design and Technology. Birkhauserabb, Basel.
S. Bieber (2019). Atmospheric Pressures: Victor Lundy's AEC Pavilion and the Sociopolitical Climates of Inflatable Architecture. Journal of Architectural Education, 73, 32-45.
S. Francis (2019). Bubbletecture: Inflatable Architecture and Design. Phaidon Press, London.
S. Topham (2002). "blow up: inflatable art, architecture and design". Prestel Publishing, Munich.
V. M. Hernandez-Izquierdo (2007). Thermal transitions, extrusion, and heat sealing of whey protein edible films (Publication No. 3261160) [Bachelor thesis, National Autonomous University of Mexico]. University Microfilms International (UMI): microform, Michigan, MI.
W. McLean & P. Silver (2015). Air Structures (Form + Technique). Laurence King Publishing, London.
Y. Baranovskaya, M. Prado, M. Dörstelmann, A. Menges (2016, Aug). Knitflatable Architecture: Pneumatically activated pre-programmed knitted textile spaces. The 34th International Conference on Education and research in Computer Aided Architectural Design in Europe (eCAADe 2016), 1, 571-580.
Y. Cheng-Lung (2019). The development of inflatable structure: Transformed tent (Publication No. 2198203) [Master thesis, National Cheng Lung University].