簡易檢索 / 詳目顯示

研究生: 吳仰鎧
Wu, Yang-Kai
論文名稱: Sn-Zn與Sn-Ag-Cu系列無鉛銲錫之比熱量測與探討
Investigation of the heat capacity of Sn-Zn and Sn-Ag-Cu lead-free solders
指導教授: 林光隆
Lin, Kwang-Lung
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 84
中文關鍵詞: 無鉛銲錫比熱差式掃描熱分析儀
外文關鍵詞: heat capacity, DSC, lead-free, Differential scanning calorimeter
相關次數: 點閱:79下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用差式掃描熱分析儀 ( Differential scanning calorimeter ) 量測Sn-Zn與Sn-Ag-Cu系列無鉛銲錫之比熱數值,並將比熱數值與溫度之關係進行理論推導。為了精確的獲得比熱數值,同一成分的合金量測五次,量測用的試片不重覆使用,且做成與校正品sapphire一樣的圓餅狀,最後用sapphire將五次結果進行校正,取其平均值並算出標準差。
    實驗的結果發現,Sn-Zn系統的比熱數值略高於Sn-Ag-Cu系統的比熱數值。就Sn-Zn與Sn-Ag-Cu系統而言,Ag元素的添加生成的IMC,改變了合金相的內能與動能,造成比熱數值下降。就比熱溫度關係之觀點來看,Sn-Zn的比熱數值與溫度成正相關。Sn-Ag-Cu系統與溫度也是成正相關,但是並不明顯,且比熱數值比較小,提供同樣的能量,溫度的變化比較大。就融熔所需的總能而言,經由比熱對溫度之積分以及融化熱的合,得知Sn-Zn與Sn-Ag-Cu合金系統在製程上所需的熱能差異不大。由Sn-Zn與Sn-Ag-Cu之比熱、融點、融化熱以及液相點之比較,適合Sn-Zn系合金之迴銲(reflow)最高溫建議為230℃~235℃。

    The present work investigated the specific heat capacity of Sn-Zn and Sn-Ag-Cu lead-free solder alloys by using differential scanning calorimeter, and calculated the theoretical values which correspond with temperature. In order to obtain accurate values of specific heat capacity, five disk-like specimens were used and the results were averaged after calibrating with sapphire.
    The experimental results show that the specific heat capacity of Sn-Zn alloys are higher than Sn-Ag-Cu alloys. With the addition of Ag, the inner energy changes with the formation of intermetallic compound, and the values of specific heat capacity were reduced. In Sn-Zn solder alloys, the values of heat capacity were proportional to temperature. In Sn-Ag-Cu solder alloys, the values of heat capacity were also proportional to temperature. Because the specific heat of Sn-Ag-Cu is small, temperature change will be high with the addition of heat. By summing up the heats from solid state to liquid state of Sn-Zn and Sn-Ag-Cu alloys, we find that the values are closely related. Comparing specific heat capacity、melting point、heat of fusion and liquidus temperature with Sn-Ag-Cu alloys, the suggested peak temperature of Sn-Zn alloys for reflow profile should be between 230℃ to 235℃.

    目錄 中文摘要.................................................Ⅰ 英文摘要.................................................Ⅱ 誌謝.....................................................Ⅲ 總目錄...................................................Ⅳ 表目錄...................................................Ⅵ 圖目錄...................................................Ⅶ 附件目錄.................................................Ⅸ 第壹章 前言...............................................1 1-1無鉛銲錫簡介...........................................1 1-2比熱簡介...............................................2 1-3 DSC原理介紹...........................................4 1-4 DSC校正..............................................10 1-4-1 基線校正(baseline calibration).....................10 1-4-2 溫度校正...........................................13 1-5 DSC量測比熱之原理與方法..............................13 1-6其他量測比熱之方法....................................17 第貳章 實驗方法與步驟....................................19 2-1實驗流程與儀器設置....................................19 2-2合金種類與配製方法....................................19 2-3比熱量測用試片之製作方法..............................23 2-4比熱量測流程與參數....................................27 2-4-1 DSC溫控流程........................................27 2-4-2比熱量測流程........................................31 第參章 結果與討論........................................36 3-1比熱量測結果..........................................36 3-1-1 Sn-9Zn、Sn與Sn-37Pb之比熱量測結果..................36 3-1-2三元合金Sn-9Zn-XAg ( X=0.1, 0.5, 1, 2, 3 )比熱量測結果.......................................................40 3-1-3四元合金Sn-9Zn-0.5Ag-YAl ( Y=0.1, 0.2, 0.5 )比熱量測 結果.....................................................44 3-1-4 四元合金Sn-9Zn-0.5Ag-ZGa ( Z=0.1, 0.2, 0.5 )比熱量測 結果.....................................................44 3-1-5 五元合金 Sn-8.5Zn-0.5Ag-0.01Al-0.1Ga比熱量測結果...48 3-1-6 Sn-XAg-0.5Cu (X=1, 2, 3, 3.5)比熱量測結果..........48 3-2 Sn-Zn與Sn-Ag-Cu系列比熱量測結果之比較................51 3-3比熱對reflow profile之影響及建議......................55 第肆章 結論..............................................60 參考文獻.................................................61 附件.....................................................66 自述.....................................................84

    1. J. S. Hwang, Implementation lead-free Electronics, McGraw-Hill, New York, pp. 3-10, 2005.
    2. C. M. L. Wu, D. Q. Yu, C. M. T. La, and L. Wang, “Properties of lead-free solder alloys with rare earth element additions”, Materials Science and Engineering, Vol. 44, pp. 1~44, 2004.
    3. M. Abtew, and G. Selvaduray, “Lead-free solders in microelectronics”, Materials Science and Engineering, Vol. 27, pp. 95~141, 2000.
    4. J. S. Hwang, Implementation lead-free Electronics, McGraw-Hill, New York, pp. 69-87, 2005.
    5. D. J. Xie, and Z. P. Wang, “Process capability study and thermal fatigue life prediction of ceramic BGA solder joints”, Finite Elements in Analysis and Design, Vol. 30, pp. 31-45, 1998.
    6. T. Shimoto, K. Kikuchi, K. Baba, K. Matsui, H. Honda, and K. Kata, “High-performance FCBGA based on multi-layer thin-substrate packaging technology”, Microelectronics Reliability, Vol. 44, pp. 515-520, 2004.
    7. R. A. Islam, Y. C. Chan, W. Jillek, and S. Islam, ”Comparative study of wetting behavior and mechanical properties (microhardness) of Sn–Zn and Sn–Pb solders”, Microelectronics Journal, Vol. 37, pp. 705-713, 2006.
    8. R. K. Shiue, L. W. Tsay, C. L. Lin, and J. L. Ou, “The reliability study of selected Sn–Zn based lead-free solders on Au/Ni–P/Cu substrate”, Microelectronics Reliability, Vol. 43, pp. 453-463, 2003.
    9. K. S. Kim, S. H. Huh and K. Suganuma, “Effects of fourth alloying additive on microstructures and tensile properties of Sn-Ag-Cu alloy and joints with Cu”, Microelectronic Reliability, Vol. 43, pp. 259-267, 2003.
    10. C. M. L. Wu, D. Q. Yu, C. M. T. Law ,and L. Wang, “Properties of lead-free solder alloys with rare earth element additions”, Materials Science and Engineering, Vol. 44, pp. 1-44, 2004.
    11. K. I. Chen, S. C. Cheng, S. W. and K. L. Lin, “Effects of small additions of Ag, Al, and Ga on the structure and properties of the Sn–9Zn eutectic alloy”, Journal of Alloys and Compounds, Vol. 416, pp. 98-105, 2006.
    12. N. S. Liu and K. L. Lin, “Microstructure and mechanical properties of low Ga content Sn–8.55Zn–0.5Ag–0.1Al–xGa solders”, Scripta Materialia, Vol. 52, pp. 369-374, 2005.
    13. F. Gao, and T. Takemoto, “Effects of addition participation in the interfacial reaction on the growth patterns of Cu6Sn5-based IMCs during reflow process”, Journal of Alloys and Compounds, Vol. 421, pp. 283-288, 2006.
    14. F. Wang, X. Ma , and Y. Qian, “Improvement of microstructure and interface structure of eutectic Sn–0.7Cu solder with small amount of Zn addition”, Scripta Materialia, Vol. 53, pp. 699-702, 2005.
    15. M. N. Islam, Y. C. Chan, A. Sharif , and M. J. Rizvi, “Effect of 9 wt.% In addition to Sn3.5Ag0.5Cu solder on the interfacial reaction with the Au/NiP metallization on Cu pads”, Journal of Alloys and Compounds, Vol. 396, pp. 217-223, 2005.
    16. David R. Gaskell, “Introduction to the thermodynamics of materials:3rd ed.”, Taylor & Francis, Washington, pp. 21-26, 1995.
    17. T. Suzuki, and T. Matsui, “Heat capacity measurements of V-Ti-Cr ternary alloys”, Journal of Nuclear Materials, Vol. 247, pp. 249-251, 1997.
    18. R. Hultgren, R. L. Orr, P. D. Anderson, and K. K. Kelly, Selected values of Thermodynamic properties of Metals and Alloys, Wiley, New York, pp. 3-4, 1963.
    19. M. P. Stevens, Polymer chemistry: an introduction, Oxford University Press, New York, pp. 149-152, 1999.
    20. W. W. Wendlandt ; 陳道達譯, 熱分析, 渤海堂, 臺北市, pp. 251-254, 民國81年.
    21. H.B. Dong, and J.D. Hunt, “A numerical model for a heat flux DSC: Determining heat transfer coefficients within a DSC”, Materials Science and Engineering:A, Vol. 413-414, pp. 470-473, 2005.
    22. G. W. H. Hhne, “Temperature modulated differential scanning calorimetry (TMDSC) in the region of phase transitions, Part 1: theoretical considerations”, Thermochimica Acta, Vol. 330, pp. 45-54, 1999.
    23. R. L. Danley, “New heat flux DSC measurement technique”, Thermochimica Acta, Vol. 395, pp. 201-208, 2002.
    24. R. L. Danley, “New modulated DSC measurement technique”, Thermochimica Acta, Vol. 402, pp. 91-98, 2003.
    25. D. Chen, A. Green, and D. Dollimore, “DSC: the importance of baseline calibration”, Thermochimica Acta, Vol. 284, pp. 253-455, 1996.
    26. “Standard Test Method for Temperature Calibration of Differential Scanning Calorimeters and Differential Thermal Analyzers”, ASTM E967-03.
    27. P. Skoglund , and . Fransson, “Accurate temperature calibration of differential scanning calorimeters”, Thermochimica Acta, Vol. 276, pp. 27-39, 1996.
    28. F. Ziaie, A. Noori, F. Anvari, M. Ghaffari, V. Ahmadian, and S.A. Durrani, “Effect of high-dose electron irradiation on specific heat capacity of high-impact polystyrene”, Radiation Measurements, Vol. 40, pp. 758-761, 2005.
    29. “Standard Test Method for Determining Specific Heat Capacity by Differential Scanning Calorimetry”, ASTM E1269-05.
    30. T. Terai, Y. Takahashi, S. Masumura, and T. Yoneoka, “Heat capacity and phase transition of Zircaloy-4”, Journal of Nuclear Materials, Vol. 247, pp. 222-226, 1997.
    31. Y. Arita, K. Nagarajan, T. Ohashi, and T. Matsui, “Heat capacity measurements on CaTiO3 doped with Ce and La”, Journal of Nuclear Materials, Vol. 247, pp. 94-97, 1997.
    32. H. Valienta, O. D. Vasallo, R. Abdelarrague, A. Caldern, and E. Marin, “Specific Heat Measurements by a Thermal Relaxation Method: Influence of Convection and Conduction”, International Journal of Thermophysics, Vol. 27, pp. 1859-1872, 2006.
    33. Y. L. Tsai, and W. S. Hwang, “Solidification behavior of Sn-9Zn-xAg lead free solder alloys”, Material science and engineering A, Vol. 413, pp. 413-416, 2005.
    34. O. Kubaschewski, and C. B. alcock, Metallurgical Thermochemistry:5th edition, Oxford, New York, p. 339, 1979.
    35. J. Emsley, The elements, Oxford, New York, p. 196, 1989.
    36. L. Kehoe , and G.M. Crean, ” Thermal conductivity and specific heat determinations of a set of lead-free solder alloys”, Advanced Packaging Materials, pp. 203-208, 1998.
    37. S. W. Chen, C. H. Wang, S. K. Lin, and C. N. Chiu, “Phase diagrams of Pb-Free Solders and their Related Materials System”, Journal of materials science-materials in electronics, Vol. 18, pp. 19-37, 2007.
    38. J. M. Song, G. F. Lan, T. S. Lui, and L. H. Chen, “Microstructure and tensile properties of Sn–9Zn–xAg lead-free solder alloys”, Scripta Materialia, Vol. 48, pp.1047-1051.
    39. 白冠智,錫-鋅共晶無鉛銲錫球柵式陣列構裝之電遷移研究,碩士論文,成功大學材料系,第20頁,2006。
    40. 郭世明,錫銀銅覆晶銲錫隆點之熱/電遷移研究,碩士論文,成功大學材料系。

    下載圖示 校內:2008-07-25公開
    校外:2008-07-25公開
    QR CODE