簡易檢索 / 詳目顯示

研究生: 夏國和
Xia, Kuo-Ho
論文名稱: 不同外長軸/外短軸長度比 6063-T5 鋁合金橢方管在循環彎曲負載下行為之實驗研究
Experimental Study on the Behavior of 6063-T5 Aluminum Alloy Oval Rectangular Tubes with Different Outer Long Axis/Outer Short Axis Length Ratios under Cyclic Bending
指導教授: 潘文峰
Pan, Wen-Fung
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 86
中文關鍵詞: 6063-T5 鋁合金橢方管不同外長軸/外短軸長度比循環彎曲彎矩曲率外短軸變化循環至斷裂圈數
外文關鍵詞: 6063-T5 Aluminum Alloy Oval Rectangular Tubes, Different Outer Long Axis/Outer Short Axis Length Ratios, Cyclic Bending, Moment, Curvature, Outer Short Axis Variation, Cycles to Fracture
相關次數: 點閱:58下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇研究針對不同外長軸/外短軸長度比6063-T5鋁合金橢方管在曲率控制循環彎曲負載下的力學響應和破壞模式進行了深入探討,其中橢方管有四種外長軸/外短軸長度比分別為:1.5、2.0、2.5、和3.0,而循環彎曲負載則使用五種對稱的控制曲率值分別為:±0.5、±0.55、±0.6、±0.65和±0.7 m-1。於實驗彎矩-曲率的關係中顯示,在相同的控制曲率下,彎矩的極值會隨著外長軸/外短軸長度比的增加而逐漸增加。不同的控制曲率對於彎矩-曲率在圖面上的曲線趨勢影響不大,皆會呈現出穩定的彈塑性迴圈。此外,本研究也分析外短軸變化,其定義為外短軸的長度變化量/外短軸的原始長度。於實驗外短軸變化-曲率的關係中顯示,隨著外長軸/外短軸長度比的增加,外短軸變化也會出現隨之增加的情況,四種外長軸/外短軸長度比都呈現出對稱且逐步增加的棘齒趨勢。至於控制曲率-循環至斷裂圈數的關係中顯示,在固定控制曲率的情況下,循環至斷裂圈數會隨著外長軸/外短軸長度比的增加而減少。若以雙對數座標系呈現控制曲率-循環至斷裂圈數的關係,則四種外長軸/外短軸長度比會分別對應出四條直線。最後,本研究將Shaw和Kyriakides於1987年所提出的描述光滑圓管承受循環彎曲負載下的控制曲率-循環至皺曲圈數的關係式加以修改,使其適用於描述6063-T5鋁合金橢方管的控制曲率-循環至斷裂圈數的關係。此外,本研究也提出其中相關材料參數的方程式,最終理論與實驗結果的對比顯示出高度一致性,驗證了本研究所提出的經驗公式的有效性以及實用性。

    This study examines the mechanical response and failure modes of 6063-T5 aluminum alloy oval rectangular tubes with varying length ratios of the outer long axis to the outer short axis under cyclic bending loads. Tubes with length ratios of 1.5, 2.0, 2.5, and 3.0 were tested under curvature values of ±0.5, ±0.55, ±0.6, ±0.65, and ±0.7 m-1. Results showed that the maximum moment increases with the length ratio, and all moment-curvature curves exhibited stable elasto-plastic cycles regardless of curvature. The variation in the outer short axis-curvature curves displayed symmetrical and ratcheting trend. Moreover, the variation in the outer short axis increased with the length ratio. The number of cycles required to ignite fracture decreased as the length ratio increased Additionally, the controlled curvature-number of cycles required to ignite fracture showed four distinct straight lines for four length ratios on a log-log scale. This study modified the formula proposed by Shaw and Kyriakides in 1987 so that they can be used to describe the aforementioned relationships. Theoretical and experimental results were compared and found to be consistent, confirming the empirical formula’s accuracy.

    摘要 i 誌謝 xvii 目錄 xix 表目錄 xxi 圖目錄 xxii 符號說明 xxv 第一章 緒論 1 1-1 研究動機 1 1-2 文獻回顧 2 1-3 研究目的 10 第二章 實驗設備 12 2-1 彎管試驗機 12 2-2 油壓伺服控制系統 19 2-3 人機介面控制系統 26 2-4 檢測儀器 29 第三章 實驗原理 32 3-1 實驗材料與規格 32 3-2 實驗方法與原理 34 3-3 實驗操作程序與安全措施 36 3-4 實驗數據的推演與統整 38 第四章 實驗結果與理論分析 43 4-1 橢方管的實驗三階段變化 43 4-2 彎矩(M)-曲率(κ)關係 45 4-3 外短軸變化(∆ℓ/ℓshort)-曲率(κ)關係 48 4-4 控制曲率(κ)-循環至斷裂圈數(Nf)關係 51 4-5 理論分析 53 第五章 結論 56 參考文獻 57

    1. L. G. Brazier, “On the flexure of thin cylindrical shells and other thin sections”, Proceedings of the Royal Society, Series A, Vol. 116, No. 773, pp. 104-114 (1927).
    2. Shaw and S. Kyriakides, “Inelastic analysis of thin-walled tubes under cyclic bending”, International Journal of Solids and Structures, Vol. 21, No. 11, pp. 1073-1100 (1985).
    3. S. Kyriakides and P. K. Shaw, “Inelastic buckling of tubes under cyclic loads”, Journal of Pressure Vessel Technology, Vol. 109, No. 2, pp. 169-178 (1987).
    4. E. Corona and S. Kyriakides, “On the collapse of inelastic tubes under combined bending and pressure”, International Journal of Solids and Structures, Vol. 24, No. 5, pp. 505-535 (1988)
    5. E. Corona and S. Kyriakides, “An experimental investigation of the degradation and buckling of circular tubes under cyclic bending and external pressure”, Thin-Walled Structures, Vol. 12, No. 3, pp. 229-263 (1991).
    6. S. Kyriakides and G. T. Ju, “Bifurcation and localization instabilities in cylindrical shells under bending – I. Experiments”, International Journal of Solids and Structures, Vol. 29, No. 9, pp. 1117-1142 (1992).
    7. E. Corona and S. Vaze, “Buckling of elastic-plastic square tubes under bending”, International Journal of Mechanical Science, Vol. 38, No. 7, pp. 753-775 (1996).
    8. W. F. Pan, T. R. Wang and C. M. Hsu, “A curvature-ovalization measurement apparatus for circular tubes under cyclic bending”, Experimental Mechanics, Vol. 38, No. 2, pp. 99-102 (1998).
    9. W. F. Pan and Y. S. Her, “Viscoplastic collapse of thin-walled tubes under cyclic bending”, ASME Journal of Engineering Materials and Technology, Vol. 120, No. 4, pp. 287-290 (1998).
    10. W. F. Pan and C. H. Fan, “An experimental study on the effect of curvature-rate at preloading stage on subsequent creep or relaxation of thin-walled tubes under pure bending”, JSME International Journal, Series A, Vol. 41, No. 4, pp. 525-531 (1998).
    11. E. Corona and S. Kyriakides, “Asymmetric collapse modes of pipes under combined bending and pressure”, International Journal of Solids and Structures, Vol. 24, No. 5, pp. 505-535 (2000).
    12. K. L. Lee, W. F. Pan and J. N. Kuo, “The influence of the diameter-to-thickness ratio on the stability of circular tubes under cyclic bending”, International Journal of Solids and Structures, Vol. 38, No. 14, pp. 2401-2413 (2001)
    13. W. F. Pan and K. L. Lee, “The effect of mean curvature on the response and collapse of thin-walled tubes under cyclic bending”, JSME International Journal, Series A, Vol. 45, No. 2, pp. 309-318 (2002).
    14. K. H. Chang, W. F. Pan and K. L. Lee, “Mean moment effect on circular thin-walled tubes under cyclic bending”, Structural Engineering and Mechanics, Vol. 28, No. 5, pp. 495-514 (2008).
    15. K. L. Lee, C. Y. Hung, H. Y. Chang and W. F. Pan, “Buckling life estimation of circular tubes of different materials under cyclic bending”, Journal of Chinese Institute Engineers, Vol. 33, No. 2, pp. 177-189 (2010).
    16. A. Limam, L. H. Lee, E. Corona and S. Kyriakides, “Inelastic wrinkling and collapse of tubes under combined bending and internal pressure”, International Journal of Mechanical Sciences, Vol. 52, No. 5, pp. 637-647 (2012)
    17. K. L. Lee, C. M. Hsu and W. F. Pan, “The influence of mean curvatures on the collapse of sharp-notched circular tubes under cyclic bending”, Journal of Chinese Society of Mechanical Engineering, Vol. 34, No. 5, pp. 461-468 (2013).
    18. K. L. Lee, C. M. Hsu and W. F. Pan, “Response of sharp-notched circular tubes under bending creep and relaxation”, Mechanical Engineering Journal, Vol. 1, No. 2, pp. 1-14 (2014).
    19. K. L. Lee, K. H. Chang and W. F. Pan, “Failure life estimation of sharp-notched circular tubes with different notch depths under cyclic bending”, Structural Engineering & Mechanics, Vol. 60, No. 3, pp. 365-386 (2016).
    20. K. L. Lee, H. Y. Liu and W. F. Pan, “Response of round-hole tubes submitted to pure bending creep and pure bending relaxation”, Advances in Mechanical Engineering, Vol. 13, No. 9, pp. 1-17 (2021).
    21. K. L. Lee, Q. Y. Wen and W. F. Pan, “Response of round-hole tubes with different hole sizes and positions under pure bending relaxation”, Informatica Journal, Vol. 32, No. 8, pp. 48-65 (2021).
    22. K. H. Chang and W. F. Pan, “Buckling life estimation of circular tubes under cyclic bending”, International Journal of Solids and Structures, Vol. 46, No. 2, pp. 254-270 (2009).

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE