| 研究生: |
劉家蔚 Liu, Chia-Wei |
|---|---|
| 論文名稱: |
利用表面增顯紅外光吸收光譜技術發展適體感測器定量檢測二價汞離子 Development of Aptamer-Based Sensor for Quantitative Detection of Mercury (II) Ions by Surface-Enhanced Infrared Absorption Spectroscopy |
| 指導教授: |
楊瑞珍
Yang, Ruey-Jen |
| 共同指導教授: |
張憲彰
Chang, Hsien-Chang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 英文 |
| 論文頁數: | 78 |
| 中文關鍵詞: | 適體 、衰減式全反射型表面增顯紅外光技術 、二價汞離子檢測 |
| 外文關鍵詞: | Aptamer, The attenuated total reflection surface-enhanced infrared absorption spectroscopy, Mercuric ion sensing |
| 相關次數: | 點閱:97 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究結合適體(Aptamer)分子與紅外吸收光譜發展定量汞離子檢測系統,並利用無電鍍製程沉積奈米級島狀金膜於多晶矽半圓柱之平整表面上,藉以放大入射光訊號,並可有效降低檢測時的濃度限制。在過去20年,適體已廣泛被應用於各種領域,包含藥物開發、微生物檢測以及環境水質的即時監控,透過適當的序列設計,適體還可改變主鏈結構並與多種目標分子緊密結合。相較於單株抗體的成本昂貴以及使用與保存上的限制,適體具有可以大量生產、成本低廉以及穩定性高等優點;衰減式全反射型表面增顯紅外光技術(Attenuated Total Reflection-Surface Enhanced Infrared Absorption Spectroscopy, ATR-SEIRA)分析,由於具備高的靈敏度與時間解析度以及表面選擇性與低溶液背景干擾的特性,適合做為時變性介面研究。本實驗利用32個鹼基的單股去氧核醣核酸序列作為捕捉二價汞離子的專一性適體,並在5’端修飾有巰基六碳鏈與基板連接及3’端的亞甲藍分子作為光學上的特徵指示物,在適體與二價汞離子的反應後,適體分子的構型將由原本的鏈狀轉變為由中間對折的髮夾型(hairpin),這同時使得末端的亞甲藍分子也從原本的遠離表面變成更接近表面,遂可以藉由觀察到的亞甲藍光譜特徵峰值之增減,作為定量汞離子的判斷基礎;利用此一特性並搭配電化學方法,可進一步確認了表面修飾的最佳濃度參數,以及後續的二價汞離子濃度對應特徵峰值的線性量測範圍和最低濃度檢測極限。
In this study, a quantitative mercuric ion detection system was developed with aptamer and infrared absorption spectroscopy. Nano-crystalline island-shaped gold film was deposited on polycrystalline silicon prism by electroless plating process to amplify signal of incident light and effectively lower the limit of detection. Aptamers have been widely used in a variety of fields including drug development in the last two decades, microbiological sensing and environmental monitoring through proper sequence design. Compared with the cost and restrictions while using or preserving of monoclonal antibody, aptamer has many advantages such as mass production by PCR, low cost and high stability. The attenuated total reflection surface-enhanced infrared absorption spectroscopy (ATR-SEIRAS) was used to investigate due to high sensitivity, high resolution of time, surface selectivity and low solution background interference. In this research, 32-mer of single-stranded
DNA sequence was used as the specific aptamer to capture mercuric ions. Methylene blue (MB) was linked at 3’ end of aptamer as optical indicator and mercaptohexane (MCH) was immobilized at the opposite end as a linker with gold. The configuration of aptamer will transform into hairpin shape after combining with Hg(II), so that methylene blue will move from bulk to surface. With this feature, the optimal parameters of surface aptamer modification and corresponding linear detection range / limit of detection were further confirmed.
1. Lee, Jae‐Seung, Min Su Han, and Chad A. Mirkin. "Colorimetric detection of mercuric ion (Hg2+) in aqueous media using DNA‐functionalized gold nanoparticles." Angewandte Chemie International Edition 46(22): 4093-4096, 2007.
2. Osawa, Masatoshi. "Dynamic processes in electrochemical reactions studied by surface-enhanced infrared absorption spectroscopy (SEIRAS)." Bulletin of the Chemical Society of Japan 70(12): 2861-2880, 1997.
3. Cotton, F. Albert, Wilkinson, G., Murillo, C. A., & Bochman, M. "Advanced Inorganic Chemistry. 6th edn John Wiley and Sons." New York 1304 (1999).
4. Harris, Hugh H., Ingrid J. Pickering, and Graham N. George. "The chemical form of mercury in fish." Science 301: 1203-1203, 2003.
5. 黃教彥 "從《水俁公約》細說汞污染(下):台灣低估汞風險 影響食品安全" (2013)
6. Maiti, Swarnali, Gadadhar Barman, and Jayasree Konar Laha. "Detection of heavy metals (Cu2+, Hg2+) by biosynthesized silver nanoparticles." Applied Nanoscience 6(4): 529-538, 2016.
7. Zahir, Farhana, Rizwi, S. J., Haq, S. K., & Khan, R. H. "Low dose mercury toxicity and human health." Environmental Toxicology and Pharmacology 20(2): 351-360, 2005
8. Zheng, Wei, Michael Aschner, and Jean-Francois Ghersi-Egea. "Brain barrier systems: a new frontier in metal neurotoxicological research." Toxicology and Applied Pharmacology 192(1): 1-11, 2003.
9. Campbell, Linda, D. G. Dixon, and R. E. Hecky. "A review of mercury in Lake Victoria, East Africa: implications for human and ecosystem health." Journal of Toxicology and Environmental Health Part B: Critical Reviews 6(4): 325-356, 2003.
10. Wang, Qianrui, Kim, D., Dionysiou, D. D., Sorial, G. A., & Timberlake, D. "Sources and remediation for mercury contamination in aquatic systems—a literature review." Environmental Pollution 131(2): 323-336, 2004.
11. Pena-Pereira, Francisco, F., Lavilla, I., Bendicho, C., Vidal, L., & Canals, A. "Speciation of mercury by ionic liquid-based single-drop microextraction combined with high-performance liquid chromatography-photodiode array detection." Talanta 78(2): 537-541, 2009.
12. Gao, Zhongben, and Xiaoguo Ma. "Speciation analysis of mercury in water samples using dispersive liquid–liquid microextraction combined with high-performance liquid chromatography." Analytica Chimica Acta 702(1): 50-55, 2011.
13. Chiou, Chwei-Sheng, Shiuh-Jen Jiang, and K. Suresh Kumar Danadurai. "Determination of mercury compounds in fish by microwave-assisted extraction and liquid chromatography-vapor generation-inductively coupled plasma mass spectrometry." Spectrochimica Acta Part B: Atomic Spectroscopy 56(7): 1133-1142, 2001.
14. Liu, Yan, Pei Liang, and Li Guo. "Nanometer titanium dioxide immobilized on silica gel as sorbent for preconcentration of metal ions prior to their determination by inductively coupled plasma atomic emission spectrometry." Talanta 68(1): 25-30, 2005.
15. Kaercher, Luiz Eduardo, Goldschmidt, F., Paniz, J. N. G., de Moraes Flores, É. M., & Dressler, V. L. "Determination of inorganic and total mercury by vapor generation atomic absorption spectrometry using different temperatures of the measurement cell." Spectrochimica Acta Part B: Atomic Spectroscopy 60(5): 705-710, 2005.
16. Madden, Jeremy T., and Neil Fitzgerald. "Investigation of ultraviolet photolysis vapor generation with in-atomizer trapping graphite furnace atomic absorption spectrometry for the determination of mercury." Spectrochimica Acta Part B: Atomic Spectroscopy 64(9): 925-927, 2009.
17. Chen, Yu-Wei, Tong, J., D’Ulivo, A., & Belzile, N. "Determination of mercury by continuous flow cold vapor atomic fluorescence spectrometry using micromolar concentration of sodium tetrahydroborate as reductant solution." Analyst 127(11): 1541-1546, 2002.
18. Li, Yan, Yan, X. P., Dong, L. M., Wang, S. W., Jiang, Y., & Jiang, D. Q. "Development of an ambient temperature post-column oxidation system for high-performance liquid chromatography on-line coupled with cold vapor atomic fluorescence spectrometry for mercury speciation in seafood." Journal of Analytical Atomic Spectrometry 20(5): 467-472, 2005.
19. Ataka, Kenichi, Tilman Kottke, and Joachim Heberle. "Thinner, smaller, faster: IR techniques to probe the functionality of biological and biomimetic systems." Angewandte Chemie International Edition 49(32): 5416-5424, 2010.
20. Mulvaney, Shawn P. "Biosensors: Magnets tackle kinetic questions." Nature Nanotechnology 6(5): 266-267, 2011.
21. Onodera, Kota, Hirano-Iwata, A., Miyamoto, K. I., Kimura, Y., Kataoka, M., Shinohara, Y., & Niwano, M. "Label-free detection of protein− protein interactions at the GaAs/water interface through surface infrared spectroscopy: Discrimination between specific and nonspecific interactions by using secondary structure analysis." Langmuir 23(24): 12287-12292, 2007.
22. Osawa, Masatoshi, Komatsu, K. I., Samjeské, G., Uchida, T., Ikeshoji, T., Cuesta, A., & Gutiérrez, C. "The Role of Bridge‐Bonded Adsorbed Formate in the Electrocatalytic Oxidation of Formic Acid on Platinum." Angewandte Chemie International Edition 50(5): 1159-1163, 2011.
23. Zhang, Jun Feng, Park, M., Ren, W. X., Kim, Y., Kim, S. J., Jung, J. H., & Kim, J. S. "A pellet-type optical nanomaterial of silica-based naphthalimide–DPA–Cu (II) complexes: recyclable fluorescence detection of pyrophosphate." Chemical Communications 47(12): 3568-3570, 2011
24. Tang, Yanli, He, F., Yu, M., Feng, F., An, L., Sun, H., ... & Zhu, D. "A reversible and highly selective fluorescent sensor for mercury (II) using poly (thiophene) s that contain thymine moieties." Macromolecular Rapid Communications 27(6): 389-392, 2006
25. Morris, Todd, and Greg Szulczewski. "A spectroscopic ellipsometry, surface plasmon resonance, and X-ray photoelectron spectroscopy study of Hg adsorption on gold surfaces." Langmuir 18(6): 2260-2264, 2002.
26. Ono, Akira, and Humika Togashi. "Highly selective oligonucleotide‐based sensor for mercury (II) in aqueous solutions." Angewandte Chemie International Edition 43(33): 4300-4302, 2004.
27. Zhang, Min, Yin, B. C., Tan, W., & Ye, B. C. "A versatile graphene-based fluorescence “on/off” switch for multiplex detection of various targets." Biosensors and Bioelectronics 26(7): 3260-3265, 2011.
28. Barman, Gadadhar, Samanta, A., Maiti, S., & Laha, J. K. "Colorimetric Assays for the Detection of Hg (II) Ions Using Functionalized Gold and Silver Nanoparticles." Advanced Science Focus 2(1): 52-58, 2014.
29. Fan, Yingju, Zhen Liu, and Jinhua Zhan. "Synthesis of starch-stabilized Ag nanoparticles and Hg2+ recognition in aqueous media." Nanoscale Research Letters 4(10): 1230, 2009
30. Luo, Yanghe, Li, K., Wen, G., Liu, Q., Liang, A., & Jiang, Z. "A rapid surface-enhanced Raman scattering method for the determination of trace Hg2+ using rhodamine 6G-aggregated nanosilver as Probe." Plasmonics 7(3): 461-468, 2012.
31. Chen, Lingxin, Qi, N., Wang, X., Chen, L., You, H., & Li, J. "Ultrasensitive surface-enhanced Raman scattering nanosensor for mercury ion detection based on functionalized silver nanoparticles." RSC Advances 4(29): 15055-15060, 2014.
32. Enders, Dominik, Rupp, S., Küller, A., & Pucci, A. "Surface enhanced infrared absorption on Au nanoparticle films deposited on SiO 2/Si for optical biosensing: detection of the antibody–antigen reaction." Surface Science 600.23 (2006): L305-L308.
33. Shruthi, G. S., C. V. Amitha, and Blessy Baby Mathew. "Biosensors: a modern day achievement." Journal of Instrumentation Technology 2(1): 26-39, 2014.
34. Ma, Ya, Zheng, B., Zhao, Y., Yuan, H., Cai, Y., Du, J., & Xiao, D. "A sensitive and selective chemosensor for GSSG detection based on the recovered fluorescence of NDPA-Fe 3 O 4@ SiO2-Cu (II) nanomaterial." Biosensors and Bioelectronics 48: 138-144, 2013.
35. Liu, Shu‐Juan, Fang, C., Zhao, Q., Fan, Q. L., & Huang, W. "A Highly Selective, Colorimetric, and Fluorometric Multisignaling Chemosensor for Hg2+ Based on Poly (p‐phenyleneethynylene) Containing Benzo [2, 1, 3] thiadiazole." Macromolecular Rapid Communications 29(14): 1212-1215, 2008.
36. Liu, Zhong De, Li, Y. F., Ling, J., & Huang, C. Z. "A localized surface plasmon resonance light-scattering assay of mercury (II) on the basis of Hg2+− DNA complex induced aggregation of gold nanoparticles." Environmental Science & Technology 43(13): 5022-5027, 2009.
37. Khalek, M. D., Ghada A. Mahmoud, and Nabil A. El-Kelesh. "Synthesis and characterization of poly-methacrylic acid grafted chitosan-bentonite composite and its application for heavy metals recovery." Chemistry and Materials Research 2: 1-12, 2012.
38. Lloris, José M., Martínez-Máñez, R., Padilla-Tosta, M. E., Pardo, T., Soto, J., Beer, P. D., ... & Smith, D. K. "Cyclic and open-chain aza–oxa ferrocene-functionalised derivatives as receptors for the selective electrochemical sensing of toxic heavy metal ions in aqueous environments." Journal of the Chemical Society, Dalton Transactions 14: 2359-2370, 1999.
39. Navani, Naveen K., and Yingfu Li. "Nucleic acid aptamers and enzymes as sensors." Current Opinion in Chemical Biology 10(3): 272-281, 2006.
40. Ono, Akira, and Humika Togashi. "Highly selective oligonucleotide‐based sensor for mercury (II) in aqueous solutions." Angewandte Chemie International Edition 43(33): 4300-4302, 2004.
41. Yuan, Tao, Liu, Z., Hu, L., Zhang, L., & Xu, G. "Label-free supersandwich electrochemiluminescence assay for detection of sub-nanomolar Hg2+." Chemical Communications 47(43): 11951-11953, 2011.
42. Chiang, Cheng-Kang, Huang, C. C., Liu, C. W., & Chang, H. T. "Oligonucleotide-based fluorescence probe for sensitive and selective detection of mercury (II) in aqueous solution." Analytical Chemistry 80(10): 3716-3721, 2008.
43. Kanayama, Naoki, Tohru Takarada, and Mizuo Maeda. "Rapid naked-eye detection of mercury ions based on non-crosslinking aggregation of double-stranded DNA-carrying gold nanoparticles." Chemical Communications 47(7): 2077-2079, 2011.
44. Willner, Itamar, and Maya Zayats. "Electronic aptamer‐based sensors." Angewandte Chemie International Edition 46(34): 6408-6418, 2007.
45. Jegannathan, Kenthorai Raman, Abang, S., Poncelet, D., Chan, E. S., & Ravindra, P. "Production of biodiesel using immobilized lipase—a critical review." Critical Reviews in Biotechnology 28(4): 253-264, 2008.
46. Nelson, J. M., and Edward G. Griffin. "ADSORPTION OF INVERTASE." Journal of the American Chemical Society 38(5): 1109-1115, 1916.
47. Graebin, Natália G., Schöffer, J. D. N., Andrades, D. D., Hertz, P. F., Ayub, M. A., & Rodrigues, R. C. "Immobilization of Glycoside Hydrolase Families GH1, GH13, and GH70: State of the Art and Perspectives." Molecules 21(8): 1074, 2016.
48. Xiao, Shou-Jun, Samuel Brunner, and Marco Wieland. "Reactions of surface amines with heterobifunctional cross-linkers bearing both succinimidyl ester and maleimide for grafting biomolecules." The Journal of Physical Chemistry B 108(42): 16508-16517, 2004.
49. Love, J. Christopher, Estroff, L. A., Kriebel, J. K., Nuzzo, R. G., & Whitesides, G. M. "Self-assembled monolayers of thiolates on metals as a form of nanotechnology." Chemical Reviews 105(4): 1103-1170, 2005.
50. Bigelow, W. C., D. L. Pickett, and W. A. Zisman. "Oleophobic monolayers: I. Films adsorbed from solution in non-polar liquids." Journal of Colloid Science 1(6): 513-538, 1946.
51. Nuzzo, Ralph G., and David L. Allara. "Adsorption of bifunctional organic disulfides on gold surfaces." Journal of the American Chemical Society 105(13): 4481-4483, 1983.
52. Vericat, C., Vela, M. E., Benitez, G., Carro, P., & Salvarezza, R. C. "Self-assembled monolayers of thiols and dithiols on gold: new challenges for a well-known system." Chemical Society Reviews 39(5): 1805-1834, 2010.
53. Ataka, Kenichi, and Joachim Heberle. "Biochemical applications of surface-enhanced infrared absorption spectroscopy." Analytical and Bioanalytical Chemistry 388(1): 47-54, 2007.
54. Miyake, Hiroto, Shen Ye, and Masatoshi Osawa. "Electroless deposition of gold thin films on silicon for surface-enhanced infrared spectroelectrochemistry. " Electrochemistry Communications 4(12): 973-977, 2002.
55. Goutev, Nikolay, and Masayuki Futamata. "Attenuated total reflection surface-enhanced infrared absorption spectroscopy of carboxyl terminated self-assembled monolayers on gold." Applied Spectroscopy 57(5): 506-513, 2003.
56. Delgado, José Manuel, Orts, J. M., Pérez, J. M., & Rodes, A. "Sputtered thin-film gold electrodes for in situ ATR-SEIRAS and SERS studies." Journal of Electroanalytical Chemistry 617(2): 130-140, 2008.
57. Hartstein, A., J. R. Kirtley, and J. C. Tsang. "Enhancement of the infrared absorption from molecular monolayers with thin metal overlayers." Physical Review Letters 45(3): 201, 1980
58. Osawa, Masatoshi, Ataka, K. I., Yoshii, K., & Yotsuyanagi, T. "Surface-enhanced infrared ATR spectroscopy for in situ studies of electrode/electrolyte interfaces." Journal of Electron Spectroscopy and Related Phenomena 64: 371-379, 1993.
59. Vikerman, John C., and Ian S. Gilmore. "Surface analysis: the principle techniques." (1997).
60. Mudunkotuwa, Imali A., Alaa Al Minshid, and Vicki H. Grassian. "ATR-FTIR spectroscopy as a tool to probe surface adsorption on nanoparticles at the liquid–solid interface in environmentally and biologically relevant media." Analyst 139(5): 870-881, 2014.
61. Osawa, Masatoshi. "Surface-enhanced infrared absorption." Near-Field Optics and Surface Plasmon Polaritons. Springer Berlin Heidelberg. 163-187, 2001.
62. Kato, M., Y. Yazawa, and Y. Okinaka. "Electroless Gold Plating Bath Using Ascorbic Acid as Reducing Agent-Recent Improvements." Proceedings of AESF Technical Conf SUR/FIN'95. 1995.
63. Sun, Shi-Gang, Cai, W. B., Wan, L. J., & Osawa, M. "Infrared absorption enhancement for CO adsorbed on Au films in perchloric acid solutions and effects of surface structure studied by cyclic voltammetry, scanning tunneling microscopy, and surface-enhanced IR spectroscopy." The Journal of Physical Chemistry B 103(13): 2460-2466, 1999.
64. Herne, Tonya M., and Michael J. Tarlov. "Characterization of DNA probes immobilized on gold surfaces." Journal of the American Chemical Society 119(38): 8916-8920, 1997.
65. Sato, Kazuhiro, Yoshimoto, S., Inukai, J., & Itaya, K. "Effect of sulfuric acid concentration on the structure of sulfate adlayer on Au (111) electrode." Electrochemistry Communications 8(5): 725-730, 2006.
66. Angerstein-Kozlowska, H., Conway, B. E., Hamelin, A., & Stoicoviciu, L. "Elementary steps of electrochemical oxidation of single-crystal planes of Au—I. Chemical basis of processes involving geometry of anions and the electrode surfaces." Electrochimica Acta 31(8): 1051-1061, 1986.
67. Xu, Ke, Meshik, X., Nichols, B. M., Zakar, E., Dutta, M., & Stroscio, M. A. . "Graphene-and aptamer-based electrochemical biosensor." Nanotechnology 25(20): 205501, 2014.
68. Yan, Yiming, Zhang, M., Gong, K., Su, L., Guo, Z., & Mao, L. "Adsorption of methylene blue dye onto carbon nanotubes: a route to an electrochemically functional nanostructure and its layer-by-layer assembled nanocomposite." Chemistry of Materials 17(13): 3457-3463, 2005.
69. Yu, Zhiqiang, and Steven SC Chuang. "Probing methylene blue photocatalytic degradation by adsorbed ethanol with in situ IR." The Journal of Physical Chemistry C 111(37): 13813-13820, 2007.
70. Vargas, Alexandro MM, Cazetta, A. L., Kunita, M. H., Silva, T. L., & Almeida, V. C. "Adsorption of methylene blue on activated carbon produced from flamboyant pods (Delonix regia): Study of adsorption isotherms and kinetic models." Chemical Engineering Journal 168(2): 722-730, 2011.
71. Salpin, Jean‐Yves, and Debora Scuderi. "Structure of protonated thymidine characterized by infrared multiple photon dissociation and quantum calculations." Rapid Communications in Mass Spectrometry 29(20): 1898-1904, 2015.
72. Zhu, Xin-Ming, Wang, H. G., Zheng, X., & Phillips, D. L. "Role of ribose in the initial excited state structural dynamics of thymidine in water solution: A resonance raman and density functional theory investigation." The Journal of Physical Chemistry B 112(49): 15828-15836, 2008.
73. Yaguchi, Momo, Uchida, T., Motobayashi, K., & Osawa, M. "Speciation of Adsorbed Phosphate at Gold Electrodes: A Combined Surface-Enhanced Infrared Absorption Spectroscopy and DFT Study." The Journal of Physical Chemistry Letters 7(16): 3097–3102, 2016.
74. Batz, Nicholas G., and R. Scott Martin. "Selective detection of endogenous thiols using microchip-based flow analysis and mercury/gold amalgam microelectrodes." Analyst 134(2): 372-379, 2009.