簡易檢索 / 詳目顯示

研究生: 吳偉庭
Wu, Wei-Ting
論文名稱: 氧化鎢之製備及其在電致變色與非揮發性電阻式記憶體之應用
Synthesis of tungsten oxide and its application to electrochromic devices and nonvolatile resistance random access memories
指導教授: 陳貞夙
Chen, Jen-Sue
吳季珍
Wu, Jih-Jen
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 115
中文關鍵詞: 氧化鎢電致變色多孔性材料電荷轉移與傳輸電阻轉換非揮發性記憶體
外文關鍵詞: tungsten oxide, electrochromic, porous material, charge transfer and transport, resistive switching, nonvolatile memory
相關次數: 點閱:69下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 氧化鎢是一已被廣泛研究的n型半導體材料,尤其是在電致變色、電阻式記憶體、氣體感測器以及光觸媒之應用備受矚目。本論文分為四個部分,進行氧化鎢製程之研究,並探討其在電致變色與非揮發性電阻式記憶體之應用。第一部分以poly(ethylene glycol) (PEG)為模板製備多孔性的氧化鎢薄膜,並比較其與未添加PEG法之氧化鎢薄膜的電致變色性質。其中以PEG模板法製備之氧化鎢薄膜,展現出良好的電致變色性質,包含:顯著的穿透率變化、大的著色效率以及快速的著褪色響應時間。由材料分析得知此氧化鎢薄膜為奈米結晶分佈在富含孔洞之非晶態膜之結構。此孔洞結構將有利於電解液注入,並縮短鋰離子電荷傳輸所需路徑。本研究由電化學交流阻抗分析(electrochemical impedance spectroscopy,EIS)得知,鋰離子在此氧化鎢薄膜與電解液界面之電荷轉移較快速,而且在氧化鎢薄膜中的擴散也較快速。
    本研究第二部份發展出硫脲輔助法製備多孔性的氧化鎢粉末,其前驅物溶液為peroxopolytungstic acid (PTA)與硫脲。當只使用PTA溶液為前驅物時,經過熱處理後所得粉末為微米長形紡錘狀之氧化鎢。而當添加硫脲於PTA前驅物溶液時,氧化鎢粉末形貌有顯著的變化:隨著增加硫脲之添加量,氧化鎢形貌會從微米球體轉換為奈米顆粒(nanoparticles,NPs)。這些硫脲輔助法製備之氧化鎢粉末都是由直徑約50 nm奈米顆粒單元所構成。透過分析前驅物溶液,推測硫脲扮演覆蓋氧化鎢奈米顆粒單元之角色,且硫脲在熱處理過程會裂解產生氣體,可抑制奈米顆粒單元之聚集。因此,當硫脲添加量較少時,奈米顆粒會聚集成微米球體;而當硫脲添加量較多時,會得到均勻分散的奈米顆粒,且其比表面積可達20.4 m2g-1
    在第三部份中,本研究利用硫脲輔助法製備氧化鎢薄膜,並探討其在電致變色之應用。前述第一部分製備PEG模板法之前驅物溶液製備時間約需24小時,而硫脲輔助法之前驅物製備僅需約1小時,故此方法的特色是快速且不需昂貴設備。由硫脲輔助法製備且經過400 oC熱處理之氧化鎢薄膜擁有良好的電致變色性質,其型態為富含孔洞之非晶態膜之結構,且有奈米結晶均勻分佈在其中。然而,當熱處理溫度為450 oC時,雖然氧化鎢薄膜亦為孔洞結構,但因其為結晶結構,所以展現出不佳之電致變色性質。透過EIS分析得知,400 oC熱處理之氧化鎢薄膜是因為其特殊結構(奈米結晶均勻分布在非晶態膜結構),將有利於鋰離子之擴散,因此有較佳的電致變色性質。
    本論文第四部分,提出一個以硫脲輔助法製備之氧化鎢薄膜為主體,整合了電致變色單元與電阻式記憶體單元之複合元件。此部份之氧化鎢薄膜為一具有微孔洞的結構,且含有金屬鎢奈米顆粒,其中電致變色單元可以透過調控鋰離子之注入數量,產生多重組態之穿透率變化。另外,電阻式記憶體單元展現雙極性之電阻轉換行為,且高電阻態之電阻為低電阻態的104倍。因此,當施加適當偏壓於此複合元件,將可完成多重組態之穿透率變化與電阻轉換特性,未來將可分別應用在光學儲存裝置以及非揮發性記憶體。

    Tungsten oxide has demonstrated several potential applications, including electrochromic (EC) devices, resistance random access memory (RRAM), gas sensors, and photocatalysts, etc. The thesis is divided into four parts; in the first part, porous tungsten oxide films of nanocrystalline tungsten oxide embedded in an amorphous tungsten oxide matrix have been synthesized via poly(ethylene glycol) (PEG)-template sol-gel technique with peroxopolytungstic acid (PTA) precursor. The PEG-template tungsten oxide film demonstrates an EC performance superior to that of the crystalline tungsten oxide film, including larger transmittance modulation and coloration/bleaching efficiency as well as faster response times. Electrochemical impedance spectroscopy (EIS) indicates that faster charge-transfer rates at the tungsten oxide/electrolyte interface and larger Li+ diffusion coefficients in tungsten oxide are achieved in the PEG-template film. We suggest that the PEG-template tungsten oxide film with a porous crystalline/amorphous nanostructure provides an effective means for charge transfer/transport to encourage its superior EC performance.
    In the second part, an effective chemical route to nanostructured tungsten oxide powders derived from a PTA/thiourea precursor solution is demonstrated. Using PTA alone, elliptical tungsten oxide micro-spindles are hierarchically assembled from rectangular nanoparticles (NPs). With an appropriate addition of thiourea into the PTA precursor, hierarchical microspheres are obtained through the aggregation of isotropic NP unit blocks. When the thiourea content in the precursor increases further, high-surface-area mesoporous tungsten oxides composed of well-dispersed isotropic NPs can be synthesized. We suggest that thiourea acts as a capping agent for forming the isotropic NP unit blocks in the precursors. Moreover, gaseous species released at high temperatures through decomposition and oxidation of non-chelated thiourea in the precursor will suppress the aggregation of NP unit blocks. As a result, tungsten oxide powders in form of microspheres or mesoporous nanostructures can be tailored by the thiourea content in the precursor.
    In the third part, we demonstrate a thiourea-assisted route to prepare tungsten oxide films. The PEG-templed procedure of preparing the precursor in the first part needs more than 24 h, while the thiourea-assisted approach takes less than 1 h to prepare the precursor solution. The thiourea-assisted film annealed at 400 oC possesses a porous nanostructure of nanocrystalline tungsten oxide embedded in an amorphous tungsten oxide matrix, which is arisen from the gaseous species released through decomposition of thiourea oxides during annealing. The 400 oC-annealed, thiourea-assisted tungsten oxide film exhibits EC properties superior to those of the film prepared without thiourea. When increasing the annealing temperature to 450 oC, the thiourea-assisted tungsten oxide film is also porous but well-crystallized and shows inferior EC properties. EIS analysis indicates that, in addition to the porous structure, a fast charge transport rate within the solid portion of the 400 oC-annealed nanostructured film plays a crucial role in enhancing EC performances of the thiourea-assisted tungsten oxide film.
    On the other hand, many transition metal oxides have been reported their resistive switching behavior in a metal/insulator/metal structure. The resistive switching character constitutes the data recording mechanism of resistance random access memory (RRAM), which is an emerging category of nonvolatile memories (NVM) because of its simple structure, high integration density, high speed and low power consumption. In the fourth part, a device composed of fluorine doped tin oxide (FTO)-glass/WOx/electrolyte/indium-tin oxide (ITO)-glass stacking electrochromic (EC) structure and Al electrodes are locally patterned and interposed between the WOx film and electrolyte, which form an Al(top electrode)/WOx/FTO(bottom electrode) resistance random access memory (RRAM) unit, is demonstrated. According to transmission electron microscopy and x-ray photoelectron spectroscopy analyses, the WOx film contains nano-size pores and metallic-tungsten nanoclusters which are scattered within the tungsten oxide layer and concentrated along the interface between the Al electrode and WOx film. With application of voltage to the ITO electrode, multiple transmittance states are achieved for the EC unit due to the different quantity of intercalated Li ions in the WOx film. As for the Al/WOx/FTO RRAM unit, a bipolar nonvolatile resistive switching behavior is attained by applying voltage on the Al top electrode, showing electrical bistability with an ON/OFF current ratio up to 10000.

    第1章 前言與研究目的 1 1-1 前言 1 1-2 研究目的 5 第2章 理論基礎 7 2-1 電致變色系統簡介 7 2-1.1 電致變色材料 7 2-1.2 電致變色機制 9 2-1.3 電致變色性質 11 2-1.4 電致變色元件之應用 13 2-2 電阻式記憶體簡介 16 2-2.1 電流-電壓特徵曲線 16 2-2.2 電阻轉換機制 17 2-3 氧化鎢材料與製程介紹 28 2-3.1 氧化鎢材料簡介 28 2-3.2 氧化鎢薄膜之製程簡介 29 第3章 研究方法 31 3-1 實驗方法與材料 31 3-2 實驗設備 33 3-2.1 旋轉塗佈機 33 3-2.2 高溫爐 33 3-2.3 濺鍍系統 33 3-3 分析儀器與方法 35 3-3.1 掃描式電子顯微鏡 35 3-3.2 穿透式電子顯微鏡 35 3-3.3 X光繞射分析儀 36 3-3.4 拉曼分析儀 37 3-3.5 恆電位儀 39 3-3.6 紫外/可見/近紅外分光光譜儀 39 3-3.7 電化學交流阻抗分析 39 3-3.8 物理吸附分析儀 40 3-3.9 測溫系統 40 3-3.10 紅外線光譜法 41 3-3.11 X光光電子能譜儀 41 3-3.12 量測電致變色與電阻式記憶體複合元件 42 第4章 PEG模板法製備氧化鎢薄膜及其在電致變色之應用 43 4-1 前言 43 4-2 實驗方法 43 4-2.1 製備氧化鎢薄膜 43 4-2.2 組裝電致變色元件 44 4-3 薄膜表面形貌與微結構分析 45 4-3.1 表面形貌分析 45 4-3.2 微結構分析 45 4-4 電致變色性質分析 47 4-4.1 著褪色態穿透率變化 47 4-4.2 著色效率 48 4-4.3 著褪色響應時間 49 4-4.4 穩定度測試 50 4-5 鋰離子於薄膜中之電荷轉移與傳輸特性分析 52 4-6 微結構與電致變色性質之相關性 54 4-7 結論 55 第5章 硫脲輔助法製備氧化鎢粉末 57 5-1 前言 57 5-2 實驗方法 57 5-3 表面形貌與結晶結構分析 58 5-3.1 表面形貌分析 58 5-3.2 微結構分析 60 5-4 表面積分析 63 5-5 成長機制探討 64 5-5.1 前驅物溶液之FTIR分析 64 5-5.2 前驅物溶液之即時溫度量測 65 5-5.3 成長機制探討 66 5-6 結論 68 第6章 硫脲輔助法製備氧化鎢薄膜及其在電致變色之應用 69 6-1 前言 69 6-2 實驗方法 69 6-2.1 製備氧化鎢薄膜 69 6-2.2 組裝電致變色元件 70 6-3 薄膜表面形貌與微結構分析 70 6-3.1 表面形貌分析 70 6-3.2 微結構分析 72 6-4 電致變色性質分析 76 6-4.1 著褪色態穿透率變化 76 6-4.2 著色效率 77 6-4.3 著褪色響應時間 78 6-4.4 可靠度測試 79 6-5 鋰離子於薄膜中之電荷轉移與傳輸特性分析 82 6-6 微結構與電致變色性質之相關性 84 6-7 結論 84 第7章 氧化鎢薄膜在電致變色電阻式記憶體複合元件之應用 87 7-1 前言 87 7-2 實驗方法 87 7-2.1 製備薄膜 87 7-2.2 製備電致變色電阻式記憶體之複合元件 88 7-3 薄膜微結構與化學鍵結分析 89 7-3.1 微結構分析 89 7-3.2 化學鍵結分析 91 7-4 電致變色性質(EC單元) 93 7-4.1 著色效率 93 7-4.2 多重組態穿透率變化 93 7-5 電阻轉換性質(RRAM單元) 96 7-5.1 電流電壓特徵曲線 96 7-5.2 記憶保存時間與元件可運作次數測試 96 7-5.3 電阻轉換機制探討 98 7-6 結論 100 第8章 總結 101 第9章 參考文獻 103

    1. 林憲德, "綠建築", 科學發展, 460期, 6 (2011年4月)
    2. R. Baetens, B. P. Jelle, A. Gustavsen, "Properties, requirements and possibilities of smart windows for dynamic daylight and solar energy control in buildings: A state-of-the-art review", Sol. Energy Mater. Sol. Cells 94, 87 (2010).
    3. S. Papaefthimiou, E. Syrrakou, P. Yianoulis, "An alternative approach for the energy and environmental rating of advanced glazing: An electrochromic window case study", Energy Build. 41, 17 (2009).
    4. J. Hutchby, M. Garner, "Assessment of the Potential & Maturity of Selected Emerging Research Memory Technologies Workshop & ERD/ERM Working Group Meeting", The International Technology Roadmap for Semiconductors (2010).
    5. N. Derhacobian, S. C. Hollmer, N. Gilbert, M. N. Kozicki, "Power and Energy Perspectives of Nonvolatile Memory Technologies", Proc. IEEE 98, 283 (2010).
    6. 菊地正典, 影山隆雄, "圖解電子裝置", 世貿出版有限公司, 台北 (2010年7月).
    7. C. G. Granqvist, "Handbook of inorganic electrochromic materials", Elsevier, The Netherlands (1995).
    8. P. M. S. Monk, R. J. Mortimer, D. R. Rosseinsky, "Electrochromism: Fundamentals and Applications", VCH, Germany (1995).
    9. E. Rossinyol, A. Prim, E. Pellicer, J. Arbiol, F. Hernandez -Ramirez, F. Peiro, A. Cornet, J. R. Morante, L. A. Solovyov, B. Z. Tian, T. Bo, D. Y. Zhao, "Synthesis and characterization of chromium-doped mesoporous tungsten oxide for gas-sensing applications", Adv. Funct. Mater. 17, 1801 (2007).
    10. D. Chen, J. H. Ye, "Hierarchical WO3 hollow shells: Dendrite, sphere, dumbbell, and their photocatalytic properties", Adv. Funct. Mater. 18, 1922 (2008).
    11. J. J. Wu, M. D. Hsieh, W. P. Liao, W. T. Wu, J. S. Chen, "Fast-Switching Photovoltachromic Cells with Tunable Transmittance", ACS Nano 3, 2297 (2009).
    12. C. H. Ho, C. L. Hsu, C. C. Chen, J. T. Liu, C. S. Wu, C. C. Huang, C. M. Hu, F. L. Yang, "9nm Half-Pitch Functional Resistive Memory Cell with <1mA Programming Current Using Thermally Oxidized Sub-Stoichiometric WOx Film", IEEE International Electron Devices Meeting, 10-436 (2010)
    13. S. J. Yoo, J. W. Lim, Y. E. Sung, Y. H. Jung, H. G. Choi, D. K. Kim, "Fast switchable electrochromic properties of tungsten oxide nanowire bundles", Appl. Phys. Lett. 90, 173126 (2007).
    14. J. M. Wang, E. Khoo, P. S. Lee, J. Ma, "Synthesis, assembly, and electrochromic properties of uniform crystalline WO3 nanorods", J. Phys. Chem. C 112, 14306 (2008).
    15. S. H. Baeck, T. Jaramillo, G. D. Stucky, E. W. McFarland, "Controlled electrodeposition of nanoparticulate tungsten oxide", Nano Lett. 2, 831 (2002).
    16. S. H. Lee, R. Deshpande, P. A. Parilla, K. M. Jones, B. To, A. H. Mahan, A. C. Dillon, "Crystalline WO3 nanoparticles for highly improved electrochromic applications", Adv. Mater. 18, 763 (2006).
    17. M. Deepa, A. G. Joshi, A. K. Srivastava, S. M. Shivaprasad, S. A. Agnihotry, "Electrochromic nanostructured tungsten oxide films by sol-gel: Structure and intercalation properties", J. Electrochem. Soc. 153, C365 (2006).
    18. B. Yang, P. R. F. Barnes, W. Bertram, V. Luca, "Strong photoresponse of nanostructured tungsten trioxide films prepared via a sol-gel route", J. Mater. Chem. 17, 2722 (2007).
    19. W. Morales, M. Cason, O. Aina, N. R. de Tacconi, K. Rajeshwar, "Combustion synthesis and characterization of nanocrystalline WO3", J. Am. Chem. Soc. 130, 6318 (2008).
    20. A. Cremonesi, Y. Djaoued, D. Bersani, P. P. Lottici, "Micro-Raman spectroscopy on polyethylene-glycol assisted sol-gel meso and macroporous WO3 thin films for electrochromic applications", Thin Solid Films 516, 4128 (2008).
    21. Y. Djaoued, P. V. Ashrit, S. Badilescu, R. Bruning, "Synthesis and characterization of macroporous tungsten oxide films for electrochromic application", J. Sol-Gel Sci. Technol. 28, 235 (2003).
    22. C. Santato, M. Odziemkowski, M. Ulmann, J. Augustynski, "Crystallographically oriented Mesoporous WO3 films: Synthesis, characterization, and applications", J. Am. Chem. Soc. 123, 10639 (2001).
    23. Y. W. Jiang, S. G. Yang, Z. H. Hua, H. B. Huang, "Sol-Gel Autocombustion Synthesis of Metals and Metal Alloys", Angew. Chem.-Int. Edit. 48, 8529 (2009).
    24. K. Deshpande, A. Mukasyan, A. Varma, "Direct synthesis of iron oxide nanopowders by the combustion approach: Reaction mechanism and properties", Chem. Mater. 16, 4896 (2004).
    25. S. T. Aruna, A. S. Mukasyan, "Combustion synthesis and nanomaterials", Curr. Opin. Solid State Mat. Sci. 12, 44 (2008).
    26. K. C. Patil, S. T. Aruna, S. Ekambaram, "Combustion synthesis", Curr. Opin. Solid State Mat. Sci. 2, 158 (1997).
    27. K. C. Patil, S. T. Aruna, T. Mimani, "Combustion synthesis: an update", Curr. Opin. Solid State Mat. Sci. 6, 507 (2002).
    28. M. G. Kim, M. G. Kanatzidis, A. Facchetti, T. J. Marks, "Low-temperature fabrication of high-performance metal oxide thin-film electronics via combustion processing", Nat. Mater. 10, 382 (2011).
    29. J. Madarasz, A. Braileanu, M. Crisan, G. Pokol, "Comprehensive evolved gas analysis (EGA) of amorphous precursors for S-doped titania by in situ TG-FTIR and TG/DTA-MS in air: Part 2. Precursor from thiourea and titanium(IV)-n-butoxide", J. Anal. Appl. Pyrolysis 85, 549 (2009).
    30. J. Madarasz, A. Braileanu, G. Pokol, "Comprehensive evolved gas analysis of amorphous precursors for S-doped titania by in situ TG-FTIR and TG/DTA-MS - Part 1. Precursor from thiourea and titanium(IV)-isopropoxide", J. Anal. Appl. Pyrolysis 82, 292 (2008).
    31. Y. F. Gao, M. Nagai, W. S. Seo, K. Koumoto, "Template-free self-assembly of a nanoporous TiO2 thin film", J. Am. Ceram. Soc. 90, 831 (2007).
    32. J. Madarasz, G. Pokol, "Comparative evolved gas analyses on thermal degradation of thiourea by coupled TG-FTIR and TG/DTA-MS instruments", J. Therm. Anal. Calorim. 88, 329 (2007).
    33. C. G. Granqvist, A. Azens, A. Hjelm, L. Kullman, G. A. Niklasson, D. Ronnow, M. S. Mattsson, M. Veszelei, G. Vaivars, "Recent advances in electrochromics for smart windows applications", Sol. Energy 63, 199 (1998).
    34. S. H. Lee, H. M. Cheong, C. E. Tracy, A. Mascarenhas, A. W. Czanderna, S. K. Deb, "Electrochromic coloration efficiency of a-WO3-y thin films as a function of oxygen deficiency", Appl. Phys. Lett. 75, 1541 (1999).
    35. S. K. Deb, "Opportunities and challenges in science and technology of WO3 for electrochromic and related applications", Sol. Energy Mater. Sol. Cells 92, 245 (2008).
    36. H. Kaneko, S. Nishimoto, K. Miyake, N. Suedomi, "Physical and Electrochemichromic Properties of Rf-Sputtered Tungsten-Oxide Films", J. Appl. Phys. 59, 2526 (1986).
    37. S. Y. Park, J. M. Lee, C. Noh, S. U. Son, "Colloidal approach for tungsten oxide nanorod-based electrochromic systems with highly improved response times and color efficiencies", J. Mater. Chem. 19, 7959 (2009).
    38. C. C. Liao, F. R. Chen, J. J. Kai, "Annealing effect on electrochromic properties of tungsten oxide nanowires", Sol. Energy Mater. Sol. Cells 91, 1258 (2007).
    39. Y. Y. Song, Z. D. Gao, J. H. Wang, X. H. Xia, R. Lynch, "Multistage Coloring Electrochromic Device Based on TiO2 Nanotube Arrays Modified with WO3 Nanoparticles", Adv. Funct. Mater. 21, 1941 (2011).
    40. M. J. Wang, G. J. Fang, L. Y. Yuan, H. H. Huang, Z. H. Sun, N. S. Liu, S. H. Xia, X. Z. Zhao, "High optical switching speed and flexible electrochromic display based on WO3 nanoparticles with ZnO nanorod arrays' supported electrode", Nanotechnology 20, 185304 (2009).
    41. C. G. Granqvist, E. Avendano, A. Azens, "Electrochromic coatings and devices: survey of some recent advances", Thin Solid Films 442, 201 (2003).
    42. F. A. Pizzarello, Y. Linda, Rockwell International Corporation, "Electrochromic nonvolatile memory device", U.S. Patent 4,498,156 (1985)
    43. G. Sonmez, H. B. Sonmez, "Polymeric electrochromics for data storage", J. Mater. Chem. 16, 2473 (2006).
    44. G. de Ruiter, Y. H. Wijsboom, N. Oded, M. E. van der Boom, "Polymeric Memory Elements and Logic Circuits that Store Multiple Bit States", ACS Appl. Mater. Interfaces 2, 3578 (2010).
    45. R. Waser, R. Dittmann, G. Staikov, K. Szot, "Redox-Based Resistive Switching Memories - Nanoionic Mechanisms, Prospects, and Challenges", Adv. Mater. 21, 2632 (2009).
    46. K. Terabe, T. Hasegawa, T. Nakayama, M. Aono, "Quantized conductance atomic switch", Nature 433, 47 (2005).
    47. M. Aono, T. Hasegawa, "The Atomic Switch", Proc. IEEE 98, 2228 (2010).
    48. C. Schindler, G. Staikov, R. Waser, "Electrode kinetics of Cu-SiO2-based resistive switching cells: Overcoming the voltage-time dilemma of electrochemical metallization memories", Appl. Phys. Lett. 94, 072109 (2009).
    49. Y. C. Yang, F. Pan, Q. Liu, M. Liu, F. Zeng, "Fully Room-Temperature-Fabricated Nonvolatile Resistive Memory for Ultrafast and High-Density Memory Application", Nano Lett. 9, 1636 (2009).
    50. X. Guo, C. Schindler, S. Menzel, R. Waser, "Understanding the switching-off mechanism in Ag+ migration based resistively switching model systems", Appl. Phys. Lett. 91, 133513 (2007).
    51. J. J. Yang, M. D. Pickett, X. M. Li, D. A. A. Ohlberg, D. R. Stewart, R. S. Williams, "Memristive switching mechanism for metal/oxide/metal nanodevices", Nat. Nanotechnol. 3, 429 (2008).
    52. D. H. Kwon, K. M. Kim, J. H. Jang, J. M. Jeon, M. H. Lee, G. H. Kim, X. S. Li, G. S. Park, B. Lee, S. Han, M. Kim, C. S. Hwang, "Atomic structure of conducting nanofilaments in TiO2 resistive switching memory", Nat. Nanotechnol. 5, 148 (2010).
    53. J. J. Yang, J. P. Strachan, Q. F. Xia, D. A. A. Ohlberg, P. J. Kuekes, R. D. Kelley, W. F. Stickle, D. R. Stewart, G. Medeiros-Ribeiro, R. S. Williams, "Diffusion of Adhesion Layer Metals Controls Nanoscale Memristive Switching", Adv. Mater. 22, 4034 (2010).
    54. J. J. Yang, M. X. Zhang, J. P. Strachan, F. Miao, M. D. Pickett, R. D. Kelley, G. Medeiros-Ribeiro, R. S. Williams, "High switching endurance in TaOx memristive devices", Appl. Phys. Lett. 97, 232102 (2010).
    55. L. J. Zhang, R. Huang, M. H. Zhu, S. Q. Qin, Y. B. Kuang, D. J. Gao, C. Y. Shi, Y. Y. Wang, "Unipolar TaOx-Based Resistive Change Memory Realized With Electrode Engineering", IEEE Electron Device Lett. 31, 966 (2010).
    56. D. S. Shang, L. Shi, J. R. Sun, B. G. Shen, F. Zhuge, R. W. Li, Y. G. Zhao, "Improvement of reproducible resistance switching in polycrystalline tungsten oxide films by in situ oxygen annealing", Appl. Phys. Lett. 96, 072103 (2010).
    57. C. Moreno, C. Munuera, S. Valencia, F. Kronast, X. Obradors, C. Ocal, "Reversible Resistive Switching and Multilevel Recording in La0.7Sr0.3MnO3 Thin Films for Low Cost Nonvolatile Memories", Nano Lett. 10, 3828 (2010).
    58. K. Szot, W. Speier, G. Bihlmayer, R. Waser, "Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3", Nat. Mater. 5, 312 (2006).
    59. Z. B. Yan, Y. Y. Guo, G. Q. Zhang, J. M. Liu, "High-Performance Programmable Memory Devices Based on Co-Doped BaTiO3", Adv. Mater. 23, 1351 (2011).
    60. M. W. Barsoum, "Fundamentals of ceramics", McGraw Hill, New York (1997).
    61. C. Yoshida, K. Kinoshita, T. Yamasaki, Y. Sugiyama, "Direct observation of oxygen movement during resistance switching in NiO/Pt film", Appl. Phys. Lett. 93, 042106 (2008).
    62. T. Baiatu, R. Waser, K. H. Hardtl, "DC electrical degradation of perovskite-type titanates: III, a model of the mechanism", J. Am. Ceram. Soc. 73, 1663 (1990).
    63. J. J. Yang, F. Miao, M. D. Pickett, D. A. A. Ohlberg, D. R. Stewart, C. N. Lau, R. S. Williams, "The mechanism of electroforming of metal oxide memristive switches", Nanotechnology 20, 215201 (2009).
    64. K. M. Kim, C. S. Hwang, "The conical shape filament growth model in unipolar resistance switching of TiO2 thin film", Appl. Phys. Lett. 94, 122109 (2009).
    65. K. M. Kim, G. H. Kim, S. J. Song, J. Y. Seok, M. H. Lee, J. H. Yoon, C. S. Hwang, "Electrically configurable electroforming and bipolar resistive switching in Pt/TiO2/Pt structures", Nanotechnology 21, 305203 (2010).
    66. J. Lee, E. Bourim, W. Lee, J. Park, M. Jo, S. Jung, J. Shin, H. Hwang, "Effect of ZrOx/HfOx bilayer structure on switching uniformity and reliability in nonvolatile memory applications", Appl. Phys. Lett. 97, 172105 (2010).
    67. S. H. Chang, S. C. Chae, S. B. Lee, C. Liu, T. W. Noh, J. S. Lee, B. Kahng, J. H. Jang, M. Y. Kim, D. W. Kim, C. U. Jung, "Effects of heat dissipation on unipolar resistance switching in Pt/NiO/Pt capacitors", Appl. Phys. Lett. 92, 183507 (2008).
    68. J. Y. Son, C. H. Kim, J. H. Cho, Y. H. Shin, H. M. Jang, "Self-Formed Exchange Bias of Switchable Conducting Filaments in NiO Resistive Random Access Memory Capacitors", ACS Nano 4, 3288 (2010).
    69. D. B. Strukov, G. S. Snider, D. R. Stewart, R. S. Williams, "The missing memristor found", Nature 453, 80 (2008).
    70. J. H. Hur, M. J. Lee, C. B. Lee, Y. B. Kim, C. J. Kim, "Modeling for bipolar resistive memory switching in transition-metal oxides", Phys. Rev. B 82, 155321 (2010).
    71. A. Sawa, "Resistive switching in transition metal oxides", Mater. Today 11, 28 (2008).
    72. F. Miao, J. J. Yang, J. P. Strachan, D. Stewart, R. S. Williams, C. N. Lau, "Force modulation of tunnel gaps in metal oxide memristive nanoswitches", Appl. Phys. Lett. 95, 113503 (2009).
    73. T. B. Massalski, H. Okamoto, P. R. Subramanian, L. Kacprzak, "Binary alloy phase diagrams", ASM International, Materials Park, Ohio (1990).
    74. G. A. Niklasson, C. G. Granqvist, "Electrochromics for smart windows: thin films of tungsten oxide and nickel oxide, and devices based on these", J. Mater. Chem. 17, 127 (2007).
    75. A. Karuppasamy, A. Subrahmanyam, "Electron beam induced coloration and luminescence in layered structure of WO3 thin films grown by pulsed dc magnetron sputtering", J. Appl. Phys. 101, 113522 (2007).
    76. C. Kügeler, R. Rosezin, R. Weng, R. Waser, S. Menzel, B. Klopstra, U. Böttger, "Fast resistive switching in WO3 thin films for nonvolatile memory applications", 9th Nanotechnology Conference: IEEE NANO, 1102 (2009)
    77. M. S. Mattsson, "Li insertion into WO3: introduction of a new electrochemical analysis method and comparison with impedance spectroscopy and the galvanostatic intermittent titration technique", Solid State Ion. 131, 261 (2000).
    78. S. H. Lee, H. M. Cheong, C. E. Tracy, A. Mascarenhas, R. Pitts, G. Jorgensen, S. K. Deb, "Influence of microstructure on the chemical diffusion of lithium ions in amorphous lithiated tungsten oxide films", Electrochim Acta 46, 3415 (2001).
    79. K. Senthil, K. Yong, "Growth and characterization of stoichiometric tungsten oxide nanorods by thermal evaporation and subsequent annealing", Nanotechnology 18, 395604 (2007).
    80. W. C. Chien, Y. C. Chen, E. K. Lai, Y. D. Yao, P. Lin, S. F. Horng, J. Gong, T. H. Chou, H. M. Lin, M. N. Chang, Y. H. Shih, K. Y. Hsieh, R. Liu, C. Y. Lu, "Unipolar Switching Behaviors of RTO WOx RRAM", IEEE Electron Device Lett. 31, 126 (2010).
    81. Y. Zhang, Y. G. Chen, H. Liu, Y. Q. Zhou, R. Y. Li, M. Cai, X. L. Sun, "Three-Dimensional Hierarchical Structure of Single Crystalline Tungsten Oxide Nanowires: Construction, Phase Transition, and Voltammetric Behavior", J. Phys. Chem. C 113, 1746 (2009).
    82. S. Gubbala, J. Thangala, M. K. Sunkara, "Nanowire-based electrochromic devices", Sol. Energy Mater. Sol. Cells 91, 813 (2007).
    83. A. Wolcott, T. R. Kuykendall, W. Chen, S. W. Chen, J. Z. Zhang, "Synthesis and characterization of ultrathin WO3 nanodisks utilizing long-chain poly(ethylene glycol)", J. Phys. Chem. B 110, 25288 (2006).
    84. M. Deepa, R. Sharma, A. Basu, S. A. Agnihotry, "Effect of oxalic acid dihydrate on optical and electrochemical properties of sol-gel derived amorphous electrochromic WO3 films", Electrochim Acta 50, 3545 (2005).
    85. N. Sharma, M. Deepa, P. Varshney, S. A. Agnihotry, "FTIR and absorption edge studies on tungsten oxide based precursor materials synthesized by sol-gel technique", J. Non-Cryst. Solids 306, 129 (2002).
    86. T. Kudo, J. Oi, A. Kishimoto, M. Hiratani, "Three kinds of framework structures of corner-sharing WO6 octahedra derived from peroxo-polytungstates as a precursor", Mater. Res. Bull. 26, 779 (1991).
    87. J. Livage, G. Guzman, "Aqueous precursors for electrochromic tungsten oxide hydrates", Solid State Ion. 84, 205 (1996).
    88. B. D. Cullity, "Elements of x-ray diffraction", Addison-Wesley Pub. Co., Reading, Mass. (1978).
    89. D. A. Skoog, F. J. Holler, T. A. Nieman, "Principles of instrumental analysis", Thomson Learning, Australia (1998).
    90. J. Q. Wang, J. M. Bell, "The kinetic behaviour of ion injection in WO3 based films produced by sputter and sol-gel deposition: Part II. Diffusion coefficients", Sol. Energy Mater. Sol. Cells 58, 411 (1999).
    91. J. N. Nian, S. A. Chen, C. C. Tsai, H. S. Teng, "Structural feature and catalytic performance of Cu species distributed over TiO2 nanotubes", J. Phys. Chem. B 110, 25817 (2006).
    92. W. Cheng, E. Baudrin, B. Dunn, J. I. Zink, "Synthesis and electrochromic properties of mesoporous tungsten oxide", J. Mater. Chem. 11, 92 (2001).
    93. S. Sallard, T. Brezesinski, B. M. Smarsly, "Electrochromic stability of WO3 thin films with nanometer-scale periodicity and varying degrees of crystallinity", J. Phys. Chem. C 111, 7200 (2007).
    94. M. Deepa, A. K. Srivastava, S. Lauterbach, Govind, S. M. Shivaprasad, K. N. Sood, "Electro-optical response of tungsten oxide thin film nanostructures processed by a template-assisted electrodeposition route", Acta Mater. 55, 6095 (2007).
    95. C. Ho, I. D. Raistrick, R. A. Huggins, "Application of Ac Techniques to the Study of Lithium Diffusion in Tungsten Trioxide Thin-Films", J. Electrochem. Soc. 127, 343 (1980).
    96. C. O. Avellaneda, L. O. S. Bulhoes, "Kinetics and thermodynamic behavior of WO3 and WO3 : P thin films", Sol. Energy Mater. Sol. Cells 90, 395 (2006).
    97. C. O. Avellaneda, "Thermodynamic study of WO3 and WO3 : Li+ thin films", Mater. Sci. Eng. B-Solid State Mater. Adv. Technol. 138, 123 (2007).
    98. J. Jamnik, J. Maier, "Nanocrystallinity effects in lithium battery materials - Aspects of nano-ionics. Part IV", Phys. Chem. Chem. Phys. 5, 5215 (2003).
    99. Q. Wang, Z. H. Wen, Y. S. Jeong, J. Y. Choi, K. Y. Lee, J. H. Li, "Li-driven electrochemical properties of WO3 nanorods", Nanotechnology 17, 3116 (2006).
    100. P. Heitjans, E. Tobschall, M. Wilkening, "Ion transport and diffusion in nanocrystalline and glassy ceramics", Eur. Phys. J.-Spec. Top. 161, 97 (2008).
    101. P. Heitjans, S. Indris, "Diffusion and ionic conduction in nanocrystalline ceramics", J. Phys.-Condes. Matter 15, R1257 (2003).
    102. A. Ponzoni, E. Comini, G. Sberveglieri, J. Zhou, S. Z. Deng, N. S. Xu, Y. Ding, Z. L. Wang, "Ultrasensitive and highly selective gas sensors using three-dimensional tungsten oxide nanowire networks", Appl. Phys. Lett. 88, 203101 (2006).
    103. M. Boulova, G. Lucazeau, "Crystallite nanosize effect on the structural transitions of WO3 studied by Raman spectroscopy", J. Solid State Chem. 167, 425 (2002).
    104. M. F. Daniel, B. Desbat, J. C. Lassegues, B. Gerand, M. Figlarz, "Infrared and Raman study of WO3 tungsten trioxides and WO3, xH2O tungsten trioxide hydrates", J. Solid State Chem. 67, 235 (1987).
    105. J. H. Choy, Y. I. Kim, J. B. Yoon, S. H. Choy, "Temperature-dependent structural evolution and electrochromic properties of peroxopolytungstic acid", J. Mater. Chem. 11, 1506 (2001).
    106. Y. Hu, Y. M. Du, J. H. Yang, J. F. Kennedy, X. H. Wang, L. S. Wang, "Synthesis, characterization and antibacterial activity of guanidinylated chitosan", Carbohydr. Polym. 67, 66 (2007).
    107. Q. Y. Gao, G. P. Wang, Y. Y. Sun, I. R. Epstein, "Simultaneous tracking of sulfur species in the oxidation of thiourea by hydrogen peroxide", J. Phys. Chem. A 112, 5771 (2008).
    108. M. M. Yan, K. Liu, Z. Y. Jiang, "Electrochemical oxidation of thiourea studied by use of in situ FTIR spectroscopy", J. Electroanal. Chem. 408, 225 (1996).
    109. Z. G. Zhao, M. Miyauchi, "Shape Modulation of Tungstic Acid and Tungsten Oxide Hollow Structures", J. Phys. Chem. C 113, 6539 (2009).
    110. D. B. Williams, C. B. Carter, "Transmission electron microscopy: a textbook for materials science", Springer, New York (2009).
    111. J. F. Moulder, W. F. Stickle, P. E. Sobol, K. D. Bomben Handbook of x-ray photoelectron spectroscopy; Chastain, J., King, R. C., Eds.; Physical Electronics Inc.: Minnesota, 1995.
    112. R. Sohal, C. Walczyk, P. Zaumseil, D. Wolansky, A. Fox, B. Tillack, H. J. Mussig, T. Schroeder, "Thermal oxidation of chemical vapour deposited tungsten layers on silicon substrates for embedded non-volatile memory application", Thin Solid Films 517, 4534 (2009).
    113. T. D. Manning, I. P. Parkin, "Atmospheric pressure chemical vapour deposition of tungsten doped vanadium(IV) oxide from VOCl3, water and WCl6", J. Mater. Chem. 14, 2554 (2004).
    114. W. Weppner, R. A. Huggins, "Determination of kinetic-parameters of mixed-conducting electrodes and application to system Li3Sb", J. Electrochem. Soc. 124, 1569 (1977).
    115. W. Y. Chang, K. J. Cheng, J. M. Tsai, H. J. Chen, F. Chen, M. J. Tsai, T. B. Wu, "Improvement of resistive switching characteristics in TiO2 thin films with embedded Pt nanocrystals", Appl. Phys. Lett. 95, 042104 (2009).
    116. Q. Y. Zuo, S. B. Long, Q. Liu, S. Zhang, Q. Wang, Y. T. Li, Y. Wang, M. Liu, "Self-rectifying effect in gold nanocrystal-embedded zirconium oxide resistive memory", J. Appl. Phys. 106, 073724 (2009).
    117. D. C. Prime, "Switching Mechanisms, Electrical Characterisation and Fabrication of Nanoparticle Based Non-Volatile Polymer Memory Devices", Ph. D. thesis, De Montfort University, 2010.
    118. I. Barin, "Thermochemical data of pure substances", VCH, New York (1995).

    無法下載圖示 校內:2016-07-28公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE