簡易檢索 / 詳目顯示

研究生: 俞志強
Yee, Chee-Keong
論文名稱: 不同形狀的SOI錐狀波導之比較
The Comparative Study of Silicon-on Insulator Waveguide Tapers
指導教授: 曾碩彥
Tseng, Shuo-Yen
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 68
中文關鍵詞: 絕緣層覆矽波導錐狀
外文關鍵詞: silicon-on-insulator, waveguides, taper
相關次數: 點閱:52下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文致力於研究不同形狀的絕緣層覆矽 (silicon-on-insulator, SOI)錐狀波導之理論分析與數值模擬。首先,我們介紹這七種不同形狀的錐狀波導之基本理論,並利用Photon Design模擬軟體設計出這七種不同形狀的錐狀波導系統。根據這七種不同形狀的錐狀波導之優點與缺點,我們可以從中分析出在因應的需求下應用何種形狀的錐狀波導系統,藉由此分析選擇出最佳且合適的錐狀波導。此外,本論文著重於利用絕緣層覆矽為基礎材料以具體實現不同形狀的錐狀波導,並以縮短元件的尺寸、增加元件的操作頻寬和實際製程的容忍性為研究方向,以促進高密度積體光路的發展。

    This thesis is devoted to the theoretical investigation and numerical simulations of different types of waveguide tapers based on silicon-on-insulator (SOI) platform. We begin by introducing the operation theory of the seven types of waveguide taper systems, and then we use the EigenMode Expansion (EME) method to perform the simulations. Seven waveguide taper systems are analyzed, including linear taper, Gaussian taper, two types of parabolic taper, two types of exponential taper and M&B taper. And then we compare these seven types of waveguide tapers to evaluate the performance of each taper. We analyze the shape, the length, the wavelength robustness and the fabrication tolerance of the tapers. Each taper has its own advantages and disadvantages. We can choose the most suitable type of waveguide taper system under the requirements we need.

    中文摘要 i Abstract ii Acknowledgements iii Table of Contents iv List of Figures vii Chapter 1 Introduction 1 1.1 Introduction 1 1.2 Organization of the Thesis 3 Chapter 2 Theoretical Analysis 4 2.1 Equations of the Tapers 4 2.1.1 The Formula for the Linear Taper and the Gaussian Taper 5 2.1.2 The Formula for the Parabolic Taper 6 2.1.3 The Formula for the Exponential Taper 7 2.1.4 The Formula for the M&B Taper 9 2.2 Adiabatic Condition of Waveguide Taper 10 2.3 EigenMode Expansion (EME) Method 11 Chapter 3 Simulation Results and Discussion 14 3.1 Structure of the Ridge Waveguide (RWG) for Simulation 14 3.2 Simulation and Analysis of the Tapers 16 3.2.1 The Shape of the Linear Taper 16 3.2.2 The Shape of the Gaussian Taper 17 3.2.3 The Shape of the Parabolic Taper Type 1 20 3.2.4 The Shape of the Exponential Taper Type 1 22 3.2.5 The Shape of the Parabolic Taper Type 2 24 3.2.6 The Shape of the Exponential Taper Type 2 26 3.2.7 The Shape of the M&B Taper 28 3.2.8 The Comparison of the Shape of Type 1 Taper 30 3.2.9 The Comparison of the Shape of Type 2 Taper 32 3.3 Simulation and Analysis of the Length Variation of Tapers 34 3.3.1 The Length Variation of the Linear Taper 34 3.3.2 The Length Variation of the Gaussian Taper 36 3.3.3 The Length Variation of the Parabolic Taper Type 1 38 3.3.4 The Length Variation of the Exponential Taper Type 1 40 3.3.5 The Length Variation of the M&B Taper 42 3.3.6 The Length Variation of the Parabolic Taper Type 2 44 3.3.7 The Length Variation of the Exponential Taper Type 2 46 3.3.8 The Comparison of the Length Variation of Tapers 48 3.4 Simulation and Analysis of the Wavelength Robustness of Tapers 49 3.5 Simulation and Analysis of the Fabrication Tolerance of Tapers 57 Chapter 4 Conclusion and Perspectives 66 4.1 Conclusion 66 4.2 Perspectives 66 Reference 67

    [1] R. Soref, "The past, present, and future of silicon photonics", IEEE J. Sel. Top. Quantum Electron. 12, 1678-1687, (2006).
    [2] V. R. Almeida, R. R. Panepucci, and M. Lipson, "Nanotaper for compact mode conversion", Opt. Lett. 28, 1302-1304, (2003).
    [3] N. Eti and H. Kuri, "Model Analysis of Ridge and Rib Types of Silicon Waveguides With Void Compositions", IEEE Journal of Quantum Electronics, vol. 52, 8400207, October (2016).
    [4] C. H. Chen and C. H. Chiu, "Taper-integrated multimode interference based waveguide crossing design," IEEE J. Quantum Electron. 46, 1656-1661, (2010).
    [5] W. K. Burns, A. F. Milton, and A. B. Lee, "Optical waveguide parabolic coupling horns," Appl. Phys. Lett. 30, 28–30, (1977).
    [6] Wei,H., Liu,Z., Zang, Z, Shi. W & Fang., C., "Fabrication of 4x4 tapered MMI coupler with large cross section," IEEE Photonics Technology letters, Vol.13, No.5, (2001).
    [7] J. J. Wu, B. R. Shi, and M. Kong, "Exponentially tapered multimode interference couplers," Chin. Opt. Lett. 4, 167-169, (2006).
    [8] Z. Le, L. Yin, S. Huang, M. Fu, "The cascaded exponential-tapered multimode interference couplers based triplexer design for FTTH system," Optik (2014), 4357-4362.
    [9] Y. Fu, T. Ye, W. Tang, and T. Chu, "Efficient adiabatic silicon-on-insulator waveguide taper," Photon. Res. 2, A41-A44, (2014).
    [10] A. F. Milton and W. K. Burns, "Mode coupling in optical waveguide horns," IEEE J. Quantum Electron. QE-13, 828-835, (1977).
    [11] H. X. Yang, J. Huang, D. Chen, and Z. Zhaojian, "Ultrashort and efficient adiabatic waveguide taper based on thin flat focusing lenses," Opt. Express 25, 19894-19903, (2017),
    [12] W. K. Burns, A. F. Milton, and A. B. Lee, "Optical waveguide parabolic coupling horns," Appl. Phys. Lett. 30, 28-30, (1977).
    [13] Horth, Alexandre, "Constant-loss taper and low-index waveguide for silicon photonics applications", Department of Electrical and Computer Engineering Faculty of Engineering McGill University, (2015).
    [14] P. Sethi, A. Haldar, and S. K. Selvaraja, "Ultra-compact low-loss broadband waveguide taper in silicon-on-insulator," Opt. Express 25, 10196-10203, (2017).
    [15] Lorenzo Pavesi, and David J. Lockwood, "Silicon photonics", Springer, Germany, pp.264-279, (2004).
    [16] Gallagher, D. F. & Felici, T. P., "Eigenmode expansion methods for simulation of optical propagation in photonics: pros and cons.," Proceedings of SPIE 4987, 69-82, (2003).
    [17] Wang, Z.; Zhai, Y.; Lu, Y.; Xu, J.; Sun, X.; Wang, J., "Compact optical 90◦ hybrid based on hybrid plasmonic multimode interferometer," Opt. Commun. (2018), 426, 99-104.
    [18] Y. Ding, C. Peucheret, H. Ou, and K. Yvind, "Fully etched apodized grating coupler on the SOI platform with -0.58 dB coupling efficiency," Opt. Lett. 39(18), 5348-5350, (2014).
    [19] H. F. Zhou, J. F. Song, C. Li, H. J. Zhang, and P. G. Lo, "A library of ultra-compact multimode interference optical couplers on SOI," IEEE Photon. Technol. Lett. 25, 1149–1152, (2013).
    [20] S. Pathak, D. V. Thourhout, and W. Bogaerts, "Design trade-offs for silicon-on-insulator-based AWGs for (de)multiplexer applications," Opt. Lett. 38, 2961-2964, (2013).
    [21] D. Taillaert, F. V. Laere, M. Ayre, W. Bogaerts, D. V. Thourhout,P. Bienstman, and R. Baets, "Grating coupler for coupling between optical fibers and nanophotonic waveguides," Jpn. J. Appl. Phys. 45, 6071-6077, (2006).
    [22] L. He et al., "Ultrathin Silicon-on-Insulator Grating Couplers," in IEEE Photonics Technology Letters, vol. 24, no. 24, pp. 2247-2249, Dec.15 (2012).

    無法下載圖示 校內:2025-07-08公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE