簡易檢索 / 詳目顯示

研究生: 蔡智丞
Tsai, Chih-Cheng
論文名稱: 深開挖二維與三維模擬-以臺南鐵路地下化鄰近建物段為例
2D and 3D Deep Excavation Simulations near Existing Buildings - A site of Tainan Underground Railway Project
指導教授: 洪瀞
Hung, Ching
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 117
中文關鍵詞: 臺南鐵路地下化深開挖PLAXIS 2DPLAXIS 3D
外文關鍵詞: Tainan underground railway project, Deep excavation, PLAXIS 2D&3D
相關次數: 點閱:81下載:15
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為了避免地面鐵路對都會區開發的影響,有將地面鐵路移入地下或高架化的需要,而深開挖為鐵路地下化的重要工具。本研究以台南市區鐵路地下化為例,以台鐵永久軌里程UK356 + 320 ~ UK 356 + 840段的地下化開挖工程為研究對象,針對深開挖工程細節、土壤試驗、監測資料進行整理。深開挖的過程常引致擋土壁體的側向變位、開挖區外地表沉陷等問題,本研究首先探討二維與三維單元寬度在模擬平面應變條件下的差異,再對二維與三維全模模擬結果進行探討,最後針對考慮鄰房加載與否進行更深入的討論。分析所使用的軟體為PLAXIS 2D與PLAXIS 3D。
    考量實際監測資料的不完整,本研究數值模擬跟監測結果比對,就變位增量及支撐軸力改變來驗證各開挖階段壁體變形變化的趨勢,模擬結果顯示,三維模擬能考量到整體分區施工的情形,相較於二維模擬在平面應變限制下的結果,三維模擬整體開挖所引致的地盤反應可以更好的表現,再者,鄰房加載與否對於最大壁體變位並無造成顯著增加。

    In order to avoid the interruption from the at-grade railway on the development of the urban area, it is necessary to move it underground or elevated it, and deep excavation is an important tool for the construction of an underground railway. In this study, the Tainan underground railway project, at the chainage of UK356+320~UK356+840, was taken as the research background. The details of deep excavation (cross-section, ground profile, and construction sequences), soil test, and monitoring data are collected and studied. During the delivery of deep excavation, several issues such as lateral displacement of retaining wall and surface subsidence outside excavation area are often caused.
    In this study, the difference between results from 2D and one-unit length 3D is firstly investigated. Further, 2D and full-scale 3D simulations are carried out and results are discussed. Finally, discussions on the impacts from adjacent buildings are undertaken. The software Plaxis 2D and Plaxis 3D are adopted for the study. Due to the absence of monitoring data, the wall-displacement increment and the variation of supporting axial force from both numerical analyses and available monitoring data were used – to verify induced wall deformation at each excavation stage.
    Through the results of this study, it is concluded that the 3D simulation can take into account the impacts of zoning construction. So 3D simulation could perform better in a comparison with a 2D simulation which is only applicable to plane strain conditions. It is also concluded that the impact from adjacent buildings does not affect the maximum wall displacement induced by the deep excavation.

    摘要 I Extended Abstract II 致謝 V 目錄 VII 圖目錄 IX 表目錄 XIII 第一章 緒論 1 1.1前言 1 1.2研究動機與目的 2 1.3研究方法與內容 3 第二章 文獻回顧 5 2.1開挖引致地盤行為影響因素 5 2.2 深開挖特性 6 2.3擋土壁體變形特性 7 2.4地表沉陷特性 8 2.5數值模擬於深開挖工程之應用 10 第三章 軟體介紹及研究案例概況彙整 21 3.1 PLAXIS軟體 21 3.1.1 PLAXIS軟體介紹 21 3.1.2 PLAXIS土壤組成律模型 22 3.2臺南鐵路地下化概要 28 3.2.1地質條件與調查 28 3.2.2地下水文 29 3.2.3工程概要 30 3.2.4室內與現地試驗 36 3.2.5施工日程 41 3.2.6監測計畫 42 3.3土壤參數彙整 43 3.3.1楊氏模數 43 3.3.2內摩擦角 46 第四章 數值分析模擬及驗證 63 4.1數值模型及參數說明 63 4.1.1模型幾何 63 4.1.2 土壤參數 64 4.1.3 結構參數 71 4.1.4鄰近結構物載重參數設置 74 4.1.5施工工序 76 4.2案例數值模擬結果 86 4.2.1 A-Aʹ斷面數值模擬結果 86 4.2.2 B-Bʹ斷面數值模擬結果 88 4.3監測資料修正及驗證 90 4.3.1 A-Aʹ斷面數值模擬結果修正及驗證 91 4.3.2 B-Bʹ斷面數值模擬結果修正及驗證 92 4.4鄰房載重影響 93 4.4.1 A-Aʹ斷面模擬結果 93 4.4.2 B-Bʹ斷面模擬結果 93 第五章 結論與建議 111 5.1結論 111 5.2建議 112 參考文獻 113

    1. 大陸工程公司(2018),「C211標臺南北段地下化工程,抽排水規畫設計」。
    2. 大陸工程公司(2019),「C211標臺南北段地下化工程,明挖覆蓋隧道356K+320~356K+940支撐高程調整設計」。
    3. 王建智、謝坤宏、詹勳山和洪宏勇(2003),「高雄地區深開挖案例資料收集與分析」,第十屆大地工程學術研究討論論文集 pp.175-178。
    4. 中華民國鋼結構協(2017),鋼結構極限設計法設計手冊。
    5. 內政部營建署(2021),「混凝土結構設計規範」。
    6. 交通部鐵道局中部工程處(2018、2019&2020),「臺南鐵路地下化計畫C211標臺南北段地下化工程監測月報107年7月至109年12月」。
    7. 交通部鐵路改建工程局(2011),「補充地質調查工作成果報告」。
    8. 交通部鐵路改建工程局(2013),「有關鐵路地下化在長榮新城西側施工之簡要說明」。
    9. 交通部鐵路改建工程局(2018),「C211標臺南北段地下化工程現場監測計畫書核定版」。
    10. 陳富隆(2009),「深開挖引致之地表沉陷-以高雄捷運CO2及CR2區段標為例」,國立高雄應用科技大學土木工程系,碩士論文,高雄。
    11. 許琦、李德河(1997),「高雄捷運紅橘線地質與其鄰近開沉陷特性」,捷運施工與托底工程研討會,第103-117頁,高雄。
    12. 葉賢輝(2010),「砂質地盤深開挖之位移及應力路徑探討」,國立高雄應用科技大學土木工程系,碩士論文,高雄。
    13. 曾驛勝(2015),「台南市區深開挖壁體變形與地表沉陷關係之研究」,國立成功大學土木工程系,碩士論文,臺南。
    14. 鄧建剛(1985),「有限元素法於台北市支撐開挖工程之研究」,國立台灣科技大學土木工程系,碩士論文,台北。
    15. 歐章煜(2002),「深開挖工程分析設計理論與實務」,科技圖書,台北。
    16. 龔曉南、高有潮(1998),「深開挖工程設計施工手冊」,中國建築工業出版社,北京。
    17. Bjerrum, L. & Eide, O. (1956). “Stability of Strutted Excavation in Clay. ” Geotechnique, 6, 32-47.
    18. Brinkgreve, R. B., & Shen, R. F. (2011). “Structural Elements & Modelling Excavations in Plaxis.” Delf, the Netherlands.
    19. Chuah, S. S., Tan, S. A. & Harry. (2010). “Numerical Study on a new strut-free counter embedded wall in Singapore.” Earth Retention Conference3, 740-747.
    20. Clough, G. W. & O’Rouke T. D. (1990). “Construction Induced Movements of in situ Walls.” Design performance of earth retaining structures, ASCE Special Conference, Ithaca, New York, 439-470.
    21. Duncan, J. M. & Chang, C.Y. (1970). “Nonlinear analysis of stress and strain in soil.” ASCE J. of the Soil Mech. and Found. Div., 96, 1629–1653.
    22. Finno, R. J., Blackburn, J. T. & Roboski, J. F. (2007). “Three-dimensional effects for supported excavations in clay.” Geotechnical and Geoenvironmental Engineering 133(1): 30-36.
    23. Hsieh, P. G. & Ou, C. Y. (1998). “Shape of ground surface settlement profiles caused by excavation.” Canadian Geotechnical Journal, 35, 1004-1017.
    24. Hsiung, B. C. (2002). Engineering Performance of Deep Excavation in Taipei. PhD thesis, University of Bristol, UK.
    25. Hsiung, B. C. (2009), A Case Study on the Behavior of Deep Excavation in Sand, Computer and Geotechnics, 36, 665-675.
    26. Hsiung, B. C., K. H. Yang, W. Aila & Hung, C. (2016). “Three-dimensional effects of a deep excavation on wall defections in loose to medium sands.” Computers and Geotechnics Journal, 80, 138-151.
    27. Hsiung, B. C. (2019). “Observations of the ground and structural behaviours induced by a deep excavation in loose sands.” Journal Acta Geotechnical: 1-17.
    28. Janbu, N. (1963). Soil compressibility as determined by oedometer and triaxial tests. Proc. ECSMFE Wiesbaden, 1, 19–25.
    29. Japan Road Association (1990). Specifications for highway bridges, Part IV
    30. Khoiri, M. & Ou, C. Y. (2013). “Evaluation of deformation parameter for deep excavation in sand through case histories.” Computers and Geotechnics Journal, 47, 57-67.
    31. Kondner, R. L. (1963). A hyperbolic stress strain formulation for sands. Brazil, 1, 289–324.
    32. Kulhawy, F. H. & Mayne, P. W. (1990). Manual on estimating soil properties for foundation design, Electric Power Research Institute, Palo Alto, CA.
    33. Lim, A., Ou, C. Y. & Hsieh, P. G., (2010). “Evaluation of clay constitutive models for analysis of deep excavation under undrained conditions. ” Journal of GeoEngineering 5(1): 9-20.
    34. Mana, A. I. (1976), Finite Element Analysis of Deep Excavation Behavior in Soft Clay., PhD Dissertation, Stanford Univ., Stanford, Calif., 71-106.
    35. Mana, A. I. & Clough G. W. (1981). “Prediction of Movements for Braced Cuts in Clay.” Journal of Geotechnical Engineering Division, ASCE, 107, (6), 759-777.
    36. Ou, C. Y., Hsieh, P. G. & Chiou, D. C. (1993). “Characteristics of ground surface settlement during excavation.” Canadian Geotechnical Journal, 30, 758-767.
    37. Ou, C. Y. (2006). Deep Excavation: Theory and Practice. Netherlands, Taylor & Francis.
    38. Palmer, J. H. L., & Kenny, T. C. (1972). “Analytical Study of a Braced Excavation in Weak Clay.” Canadian Geotechnical Journal, 9, (2), 145-164.
    39. Peck, R. B., Hanson, W. E., & Thornburn, T. H. (1953). Foundation Engineering, John Wiley and Sons, 222.
    40. Peck, R. B. (1969). “Deep Excavation and Tunneling in Soft Ground. State-of-the-Art Report.” Proceedings of the 7th International Conference on Soil Mechanics and Foundation Engineering, Mexico, 225-290.
    41. PLAXIS. (2021). Reference and Material Models Manual. Plaxis bv, Netherlands.
    42. Tan, S. A., & Tan, R. Y. (2004). “Numerical Study of Two Braced Excavation In Singapore Marine Clay.” Journal of the Southeast Asian Geotechnical Society, 9-27.
    43. Terzaghi, K., Peck, R.B. & Mesri, G. (1948). “Soil Mechanics in Engineering Practice.” New York, Wiley and Sons.
    44. Von Soos, P. (1990). Properties of soil and rock (in German). Grundbau Taschenbuch Part 4. Ernst & Sohn, Berlin.
    45. Wang, J., Xu, Z. & Wang, W. (2010). “Wall and Ground Movements due to Deep Excavations in Shanghai Soft Soils.” Geotechnical Geoenvironmental Engineering, 136, 985-994.
    46. Wolff, T. F. (1989). “Pile capacity prediction using parameter functions.” ASCE Geotechnical Special Publication No. 23, 96-107.

    下載圖示 校內:2023-07-21公開
    校外:2023-07-21公開
    QR CODE