簡易檢索 / 詳目顯示

研究生: 梁婷茹
Liang, Ting-Ru
論文名稱: 伺服馬達控制質量阻尼器之混合實驗
Hybrid Testing of Servo-Motor Controlled Mass Damper System
指導教授: 朱世禹
Chu, Shih-Yu
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 264
中文關鍵詞: 主動質量阻尼器伺服馬達控制質量阻尼器直接輸出回饋最佳化控制理論時間延遲效應即時積分半模擬實驗混合實驗
外文關鍵詞: Active mass damper, Servo-motor controlled mass damper, Direct output feedback control, Optimal control theory, Time delay effect, Real-time integration, Pseudo-simulation testing framework, Real-time hybrid testing
相關次數: 點閱:238下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 主動調諧質量阻尼器(AMD)於實務應用時,除了主動控制力之回饋計算與施加技術,時間延遲效應勢必加以考慮,為逐一檢視此控制系統於實務應用上之可行性與有效性,本文提出混合實驗之實驗架構。除延伸傳統主動控制理論,應用即時積分之方式,並考慮時間延遲與最佳化直接輸出回饋控制法則,利用伺服馬達控制質量阻尼器(SMCMD)作為AMD系統,以進行實驗驗證。文中先延伸前人所提出之半模擬試驗架構,利用電腦模擬裝設SMCMD系統於不同地震之主結構受控反應,同時回饋SMCMD之真實量測訊號,進行衝程命令訊號之計算,以此半模擬實驗測試SMCMD之可行性。為了測試真實結構使用SMCMD之控制效益,本文進一步規劃混合實驗,於振動台上裝設SMCMD,並以振動台模擬主結構相對位移反應,實際量測振動台與SMCMD之訊號作為回饋,進行控制效益之驗證試驗。半模擬實驗與混合實驗除了驗證直接輸出回饋控制理論之可行性,更可先行識別系統延遲時間,以利後續進行實體結構控制實驗之規劃應用。實驗結果顯示使用對應系統延遲時間求出之控制增益參數,可得到最佳的控制效果。

    Both real-time hybrid testing framework and pseudo-simulation testing framework are proposed in this study to investigate the interactive control performance and the time-delay effect of an active mass damper (AMD) system. A servo-motor controlled mass damper (SMCMD) system adopted with discrete-time optimal direct output feedback control algorithm considering time-delay effect is applied in this study to validate its feasibility and effectiveness step by step. A real-time integration technique is embedded in the control command calculation procedure to conduct the control performance evaluation through the pseudo- simulation testing framework. The measured stroke of the SMCMD system is interacted with the controlled structure simulated by its numerical model in the computer. Furthermore, the SMCMD is installed on a shaking table which provides the real-time responses of the controlled structure to conduct the proposed hybrid testing. The structural responses can be effectively reduced if the discrete-time control gains considering delay time are correctly adopted.

    摘要 I ABSTRACT II 誌謝 III 目錄 V 表目錄 VIII 圖目錄 X 符號表 XVII 第1章 緒論 1 1.1 前言 1 1.2 文獻回顧 3 1.3 本文內容 7 第2章 主動型調諧質量阻尼器之分析理論 10 2.1 一般結構係使用AMD之系統運動方程式之推導 10 2.1.1 廣義系統運動方程式推導 10 2.1.2 連續時間系統離散化 13 2.2 直接輸出回饋控制推導 15 2.2.1 連續時間控制增益之推導 15 2.2.2 離散時間控制增益之推導 18 2.3 主動控制系統應用即時積分之反應分析理論推導 23 2.3.1 反應分析理論推導 23 2.3.2 即時結構物反應積分器 27 2.4 時間域數值分析理論 32 2.4.1 傳統主動控制系統反應分析理論 32 2.4.2 主動控制系統應用即時積分反應分析理論 32 2.5 頻率域穩定性分析理論 33 第3章 伺服馬達控制質量阻尼器 43 3.1 硬體介紹 44 3.1.1 伺服馬達控制質量阻尼器外觀及元件 44 3.1.2 運動控制卡(NI PCI-7340) 45 3.1.3 伺服馬達控制質量阻尼器控制箱 46 3.2 MAE軟體 47 3.3 LABVIEW軟體 48 3.4 伺服馬達控制質量阻尼器之使用限制 50 第4章 主動控制系統時間域數值分析 57 4.1 系統參數說明 57 4.2 考慮AMD衝程與速度限制之數值分析流程 60 4.2.1 傳統主動控制系統反應分析 60 4.2.2 主動控制系統應用即時積分反應分析 61 4.3 數值模擬之結果探討 64 4.3.1 不同數值反應分析方法之結果比較 64 4.3.2 變動控制參數之控制成效 65 4.3.3 AMD衝程與速度受限制之控制成效探討 66 4.4 小結 68 第5章 半模擬實驗之實驗測試 108 5.1 實驗架構 108 5.2 實驗控制流程 110 5.2.1 傳統主動控制系統反應分析 111 5.2.2 主動控制系統應用即時積分反應分析 111 5.3 系統延遲時間之識別方法與檢測 113 5.4 實驗數據與數值分析之擬合驗證 115 5.4.1 AMD衝程受限制 116 5.4.2 AMD衝程與速度受限制 116 5.5 實驗數據之結果探討 118 5.5.1 變動控制參數之控制成效 118 5.5.2 AMD衝程受限制之控制成效 118 5.5.3 AMD衝程與速度受限制之控制成效 119 5.6 小結 120 第6章 混合實驗之實驗測試 185 6.1 實驗設備與組成 185 6.2 實驗架構與流程 187 6.3 半模擬實驗和混合實驗與真實實驗之差別 189 6.4 實驗數據與數值模擬之擬合驗證 190 6.4.1 位移歷時之擬合探討 191 6.4.2 速度歷時之擬合探討 192 6.4.3 加速度歷時之擬合探討 193 6.5 實驗數據之結果探討 193 6.5.1 變動控制參數之控制成效 193 6.5.2 AMD衝程受限制之控制成效 194 6.5.3 以識別之系統延遲時間來探討控制成效 195 6.6 小結 196 第7章 結論與展望 255 7.1 結論 255 7.2 展望 257 參考文獻 258 附錄A 261

    [1]. Asami,T., Wakasono, T., Kameoka, K., Hasegawq, M., and Sekiguchi, H. Optimal design of dynamic absorbers for a system subjected to random excitation. JSME International journal,series 3 1991; 34(2): 218-226.
    [2]. Agrawal, A.K., Fujino, Y., Bharita, B.K. Instability due to time delay and its compen -sation in active control of structures. Earthquake Engineering and Structural Dynamics 1993; 22(3): 211-224 .
    [3]. Agrawal, A.K., Yang, J.N. Effect of fixed time-delay on stability and performance of actively controlled civil engineering structures. Earthquake Engineering and Structural Dynamics 1997; 26: 1169-1185.
    [4]. Agrawal, A.K., Yang, J.N. Compensation of time-delay for control of civil engineering structures. Earthquake Engineering and Structural Dynamics 2000 ; 29:37-62.
    [5]. Chung, L.L., Lin, R.C., Soong, T.T., and Reinhorn, A.M. Experimental study of active control for MDOF seismic structures. Journal of Engineering Mechanics 1989; 115(8):1609-1627.
    [6]. Chung, L.L., Lin, C.C., and Chu, S.Y. Optimal direct output feedback of structural control. Journal of Engineering Mechanics 1993; 119:2157-2173.
    [7]. Chung, L.L., Lin, C.C., Liu, K.H. Time-delay control of structure. Earthquake Engineering and Structural Dynamics 1995; 24(5):687-701.
    [8]. Chu, S.Y. Integration issues in implementation of active structure control system. ph.D. Thesis, State University of New York at Buffalo: Buffalo, New York , 2001.
    [9]. Chu, S.Y., Soong, T.T., Lin, C.C., and Chen, Y.Z. Time-delay effect and compensation on direct output feedback controlled mass damper systems. Earthquake Engineering and Structural Dynamics 2002; 31:121-137.
    [10]. Chu, S.Y., Soong, T.T., Lin, C.C., Reinhorn, A.M. Real-time active control verification via a structural simulator. Enguneering Structure 2002; Vol. 24, 343-353.
    [11]. Hui Li, Min Liu and Jinping Ou. Negative stiffness characteristics of active and semi-active control systems for stay cables. Structure Control and Health Monitoring 2008; 15:120-142.
    [12]. Inaudi, J.A., Kelly, J.M. A robust delay-compensation technique based on memory. Earthquake Engineering and Structural Dynamics 1994; 23:987-1001.
    [13]. Ketter R.L. and Prawel S.P. Jr. Modern Methods of Engineering Computation, McGraw-Hill, Inc., New York, NY, 1996.
    [14]. Lin, C.C., Sheu, J.F., Chu, S.Y., Chung, L.L. Time-delay effect and its solution for optimal output feedback control of structures. Earthquake Engineering and Structural Dynamics 1996; 25:547-559.
    [15]. Maryam Bitaraf, Stefan Hurlebaus, Luciana R. Barroso. Active and semi-active adaptive control for undamaged and damaged building structures under seismic load. Computer-Aided Civil and Infrastructure Engineering 2012. 27:48-64, (2012).
    [16]. Chu, S.Y., Lin, C.C., Chung, L.L., Chang, C.C.,and Lu, K.H. Optimal performance of discrete-time direct output-feedback structural control with delayed control forces. Structural Control and Health Monitoring 2007; 15:20-42.
    [17]. Unal Aldemir. A simple active control algorithm for earthquake excited structures. Computer-Aided Civil and Infrastructure Engineering 2012; 25:218-225.
    [18]. Xu, K., Igusa, T. Dynamic Characteristics of Multiple Substructures with Closely Spaced Frequencies. Earthquake Engineering and Structural Dynamics 1992; 21(12):1059-1070.
    [19]. 朱世禹,「直接輸出回饋之主動結構控制」,碩士論文,國立中興大學土木工程研究所 ,台中(1993)。
    [20]. 呂國華,「考慮時間延遲之離散時間系統最佳直接輸出回饋控制」,碩士論文,國立中興大學土木工程研究所,台中(1993)。
    [21]. 王信聰,「及時結構動態反應模擬器之研究應用」,碩士論文,國立暨南大學地震工程研究所,南投(2005)
    [22]. 洪文政,「建築物加速度訊號即時積分系統軟硬體整合應用研究」,碩士論文,國立成功大學土木工程研究所,台南(2006)
    [23]. 王國書,「結構動態反應訊號自動監測系統於剛心識別之應用」,碩士論文,國立成功大學土木工程研究所,台南(2007)
    [24]. 侯佳玟,「最佳化時間延遲補償之擬混合型調諧質量阻尼器於結構振動控制之研究」,碩士論文,國立成功大學土木工程研究所,台南(2007)。
    [25]. 鄒永楷,「應用伺服馬達控制平台進行主動質量阻尼器之研發與測試」,碩士論文,國立成功大學土木工程研究所,台南(2012)

    下載圖示 校內:2018-08-28公開
    校外:2018-08-28公開
    QR CODE