簡易檢索 / 詳目顯示

研究生: 陳偉州
Chen, Wei-Chou
論文名稱: 探討Eps8在尿酸結晶所活化procaspase-1路徑所扮演的角色
To investigate the role of Eps8 in MSU-induced procaspase-1 activation
指導教授: 呂增宏
Leu, Tzeng-Horng
學位類別: 碩士
Master
系所名稱: 醫學院 - 藥理學研究所
Department of Pharmacology
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 55
中文關鍵詞: 痛風尿酸結晶Eps8Procaspase-1IL-1 beta
外文關鍵詞: Gout, Monosodium urate, Eps8, Procaspase-1, IL-1 beta
相關次數: 點閱:75下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 痛風,為一種常見的代謝性關節炎,由於病患長期罹患高尿酸血症,而尿酸與血液中的鈉離子會形成尿酸結晶,尿酸結晶堆積在四肢關節處所引發的發炎反應。當關節處的尿酸結晶被巨噬細胞辨別到,會誘發巨噬細胞將其吞噬,而其中會活化巨噬細胞內免疫小體inflammasome NLRP3,procaspase-1,釋放出發炎因子IL-1 beta。IL-1 beta是主要參與在尿酸結晶誘導發炎的發炎因子,但尿酸結晶如何去誘導發炎反應的詳細機制仍不明確。Eps8 是一個致癌蛋白,調控Src及Fak的活性,此外Eps8也參與了調控LPS/TLR4 訊息傳遞及誘導巨噬細胞吞噬作用。本研究在探討Eps8 在尿酸結晶所活化procaspase-1路徑所扮演的角色,我們發現在用尿酸結晶刺激人類巨噬細胞THP-1後,Eps8 和其互動蛋白IRSp53,Src 都會有上升的現象。當我們在THP-1中抑制Eps8的表現,隨後其對尿酸結晶刺激所誘導的procaspase-1活化也會跟著下降。我們利用LPS跟IL-1 beta誘導THP-1免疫活化及刺激IL-1 beta/NFkB路徑回饋調控,我們發現Eps8參與尿酸結晶所誘導procaspase-1活化的路徑當中。在mRNA的方面,抑制Eps8表現也會使尿酸結晶誘導procaspase-1及IL-1 beta基因表現有下降的趨勢。綜合以上結果,Src 的活化參與在活化inflammasome NFkB路徑的上游,並且對於Eps8-IRSp53蛋白互動中是必要的存在,而Eps8在尿酸結晶誘導procaspase-1 中活化扮演重要的角色。

    Gouty arthritis is a metabolic disease due to hyperuricemia and accumulation of monosodium urate (MSU) crystals in the articular joints and subsequent induction of acute inflammatory response. When MSU crystals are detected and phagocytosis by macrophages, these will induce the activation of inflammasome NLRP3 and procaspase-1, releasing IL-1 beta. IL-1 beta is a major effector cytokine and plays a crucial role in MSU-induced inflammation, but the detail mechanism of MSU-mediated inflammation is not fully elucidated. EGF receptor pathway substrate no.8 (Eps8) is an oncoprotein, regulating the activity of Src and FAK. In addition, Eps8 participates in LPS/TLR4 signaling and regulates LPS-induced phagocytosis in macrophages. In this study, we aim to investigate the role of Eps8 in MSU-induced procaspase-1 activation. We found that Eps8 and its interacting proteins IRSp53 and Src are induced by MSU-treated human macrophage cell line THP-1. When knockdown Eps8, it impairs the expression of procaspase-1 as well as the cleavage of the latter protein in response to MSU treatment. THP-1 were treated with LPS or IL-1 beta to prime THP-1 or form IL-1 beta NFkB signaling feedback loop, we proved that Eps8 is involved in MSU-induced prcocaspase-1 signaling pathway. In mRNA level, silencing Eps8 also affects MSU-induced procaspase-1 activation and IL-1 beta expression. Knockdown Eps8 by lentivirus infection did not reveal the impairment of phagocytosis in THP-1 cells. Given that Src activation is in the upstream of NF-kB that participates in the activation of inflammasome and is required for the Eps8-IRSp53 interaction. Eps8 might plays a critical role in MSU-induced procaspase-1 activation.

    1. Introduction 1 1.1 GOUT 1 1.2 Innate immune system 4 1.3 Inflammation 7 1.4 Src kinase 10 1.5 Eps8 10 1.6 The objective of this study 11 2. Method and Experimental procedures 13 2.1 Reagents and Antibodies 13 2.2 Cell culture 13 2.3 shRNA lentivirus production 13 2.4 Generation of THP-1 expressing siRNA 14 2.5 Lysate 14 2.6 Western blot 14 2.7 Total RNA extraction and Reverse Transcription PCR 15 2.8 Real-time PCR 15 2.9 Phagocytosis assay 16 2.10 Stastistical analysis 16 3. Results 18 3.1 Eps8, IRp53, Src, Fak and Procaspase-1 are upregulated by high dose of MSU crystal. 18 3.2 Induction of Eps8 and its interaction proteins begin on 6-hour MSU treatment. 18 3.3 Silencing Eps8 not only affects the expression of Eps8-interacting proteins but also reduces protein level of Procaspase-1. 19 3.4 Silencing Eps8 inhibits MSU-induced inflammation pathway. 20 3.5 Knockdown Eps8 decreases MSU-induced IL-1 beta, procaspase-1, IRSp53 activation in mRNA level. 21 3.6 Eps8 participates in IL-1 beta induced NFkB pathway. 22 3.7 Knockdown Eps8 affects THP-1 cell phagocytosis activity. 22 4. Discussion 24 5. References 27

    Akira, S., Uematsu, S., & Takeuchi, O. (2006). Pathogen recognition and innate immunity. Cell, 124(4), 783-801. doi:10.1016/j.cell.2006.02.015
    Angelis, D., Fontanez-Nieves, T. D., & Delivoria-Papadopoulos, M. (2014). The role of SRC kinase in the caspase-1 pathway after hypoxia in the brain of newborn piglets. Neurochem Res, 39(11), 2118-2126. doi:10.1007/s11064-014-1404-1
    Bergsbaken, T., Fink, S. L., & Cookson, B. T. (2009). Pyroptosis: host cell death and inflammation. Nature reviews. Microbiology, 7(2), 99-109. doi:10.1038/nrmicro2070
    Beutler, B. (2004). Inferences, questions and possibilities in Toll-like receptor signalling. Nature, 430(6996), 257-263. doi:10.1038/nature02761
    Boucher, D., Monteleone, M., Coll, R. C., Chen, K. W., Ross, C. M., Teo, J. L., . . . Schroder, K. (2018). Caspase-1 self-cleavage is an intrinsic mechanism to terminate inflammasome activity. The Journal of Experimental Medicine.
    Busso, N., & So, A. (2010). Mechanisms of inflammation in gout. Arthritis Res Ther, 12(2), 206. doi:10.1186/ar2952
    Chen, C. J., Shi, Y., Hearn, A., Fitzgerald, K., Golenbock, D., Reed, G., . . . Rock, K. L. (2006). MyD88-dependent IL-1 receptor signaling is essential for gouty inflammation stimulated by monosodium urate crystals. J Clin Invest, 116(8), 2262-2271. doi:10.1172/jci28075
    Chen, Y. J., Hsieh, M. Y., Chang, M. Y., Chen, H. C., Jan, M. S., Maa, M. C., & Leu, T. H. (2012). Eps8 protein facilitates phagocytosis by increasing TLR4-MyD88 protein interaction in lipopolysaccharide-stimulated macrophages. J Biol Chem, 287(22), 18806-18819. doi:10.1074/jbc.M112.340935
    Choi, H. K., Mount, D. B., & Reginato, A. M. (2005). Pathogenesis of gout. Ann Intern Med, 143(7), 499-516.
    Chung, Y. H., Kim, D. H., & Lee, W. W. (2016). Monosodium urate crystal-induced pro-interleukin-1beta production is post-transcriptionally regulated via the p38 signaling pathway in human monocytes. Sci Rep, 6, 34533. doi:10.1038/srep34533
    Cui, S., Eisenacher, K., Kirchhofer, A., Brzozka, K., Lammens, A., Lammens, K., . . . Hopfner, K. P. (2008). The C-terminal regulatory domain is the RNA 5'-triphosphate sensor of RIG-I. Mol Cell, 29(2), 169-179. doi:10.1016/j.molcel.2007.10.032
    Di Giovine, F. S., Malawista, S. E., Nuki, G., & Duff, G. W. (1987). Interleukin 1 (IL 1) as a mediator of crystal arthritis. Stimulation of T cell and synovial fibroblast mitogenesis by urate crystal-induced IL 1. The Journal of Immunology, 138(10), 3213.
    Dinarello, C. A. (2011). Interleukin-1 in the pathogenesis and treatment of inflammatory diseases. Blood, 117(14), 3720-3732. doi:10.1182/blood-2010-07-273417
    Eitel, J., Suttorp, N., & Opitz, B. (2010). Innate immune recognition and inflammasome activation in listeria monocytogenes infection. Front Microbiol, 1, 149. doi:10.3389/fmicb.2010.00149
    Fazioli, F., Minichiello, L., Matoska, V., Castagnino, P., Miki, T., Wong, W. T., & Di Fiore, P. P. (1993). Eps8, a substrate for the epidermal growth factor receptor kinase, enhances EGF-dependent mitogenic signals. EMBO J, 12(10), 3799-3808.
    Funato, Y., Terabayashi, T., Suenaga, N., Seiki, M., Takenawa, T., & Miki, H. (2004). IRSp53/Eps8 complex is important for positive regulation of Rac and cancer cell motility/invasiveness. Cancer Res, 64(15), 5237-5244. doi:10.1158/0008-5472.Can-04-0327
    Glass, C. K., & Natoli, G. (2016). Molecular control of activation and priming in macrophages. Nat Immunol, 17(1), 26-33. doi:10.1038/ni.3306
    Govind, S., Kozma, R., Monfries, C., Lim, L., & Ahmed, S. (2001). Cdc42Hs facilitates cytoskeletal reorganization and neurite outgrowth by localizing the 58-kD insulin receptor substrate to filamentous actin. J Cell Biol, 152(3), 579-594.
    Greten, F. R., Arkan, M. C., Bollrath, J., Hsu, L. C., Goode, J., Miething, C., . . . Karin, M. (2007). NF-kappaB is a negative regulator of IL-1beta secretion as revealed by genetic and pharmacological inhibition of IKKbeta. Cell, 130(5), 918-931. doi:10.1016/j.cell.2007.07.009
    Guo, W., Ye, P., Yu, H., Liu, Z., Yang, P., & Hunter, N. (2014). CD24 activates the NLRP3 inflammasome through c-Src kinase activity in a model of the lining epithelium of inflamed periodontal tissues. Immun Inflamm Dis, 2(4), 239-253. doi:10.1002/iid3.40
    Hari, A., Zhang, Y., Tu, Z., Detampel, P., Stenner, M., Ganguly, A., & Shi, Y. (2014). Activation of NLRP3 inflammasome by crystalline structures via cell surface contact. Scientific Reports, 4, 7281. doi:10.1038/srep07281
    Harris, M. D., Siegel, L. B., & Alloway, J. A. (1999). Gout and hyperuricemia. American family physician, 59(4), 925-934.
    Hornung, V., Bauernfeind, F., Halle, A., Samstad, E. O., Kono, H., Rock, K. L., . . . Latz, E. (2008). Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nat Immunol, 9(8), 847-856. doi:10.1038/ni.1631
    Hsu, L. C., Enzler, T., Seita, J., Timmer, A. M., Lee, C. Y., Lai, T. Y., . . . Karin, M. (2011). IL-1beta-driven neutrophilia preserves antibacterial defense in the absence of the kinase IKKbeta. Nat Immunol, 12(2), 144-150. doi:10.1038/ni.1976
    Inohara, Chamaillard, McDonald, C., & Nunez, G. (2005). NOD-LRR proteins: role in host-microbial interactions and inflammatory disease. Annu Rev Biochem, 74, 355-383. doi:10.1146/annurev.biochem.74.082803.133347
    Janssens, S., Burns, K., Tschopp, J., & Beyaert, R. (2002). Regulation of interleukin-1- and lipopolysaccharide-induced NF-kappaB activation by alternative splicing of MyD88. Curr Biol, 12(6), 467-471.
    Kalia, K. K., & Moossy, J. J. (1993). Carpal tunnel release complicated by acute gout. Neurosurgery, 33(6), 1102-1103.
    Kankkunen, P., Valimaki, E., Rintahaka, J., Palomaki, J., Nyman, T., Alenius, H., . . . Matikainen, S. (2014). Trichothecene mycotoxins activate NLRP3 inflammasome through a P2X7 receptor and Src tyrosine kinase dependent pathway. Hum Immunol, 75(2), 134-140. doi:10.1016/j.humimm.2013.11.010
    Karasawa, T., & Takahashi, M. (2017). The crystal-induced activation of NLRP3 inflammasomes in atherosclerosis. Inflamm Regen, 37, 18. doi:10.1186/s41232-017-0050-9
    Kawai, T., & Akira, S. (2009). The roles of TLRs, RLRs and NLRs in pathogen recognitionInt Immunol. 21:313. International Immunology, 21(4), 317-337. doi:10.1093/intimm/dxp017
    Kotas, M. E., & Medzhitov, R. (2015). Homeostasis, inflammation, and disease susceptibility. Cell, 160(5), 816-827. doi:10.1016/j.cell.2015.02.010
    Lanzetti, L., Rybin, V., Malabarba, M. G., Christoforidis, S., Scita, G., Zerial, M., & Di Fiore, P. P. (2000). The Eps8 protein coordinates EGF receptor signalling through Rac and trafficking through Rab5. Nature, 408(6810), 374-377. doi:10.1038/35042605
    Liebman, S. E., Taylor, J. G., & Bushinsky, D. A. (2007). Uric acid nephrolithiasis. Curr Rheumatol Rep, 9(3), 251-257.
    Lin, Y. C., Huang, D. Y., Wang, J. S., Lin, Y. L., Hsieh, S. L., Huang, K. C., & Lin, W. W. (2015). Syk is involved in NLRP3 inflammasome-mediated caspase-1 activation through adaptor ASC phosphorylation and enhanced oligomerization. J Leukoc Biol, 97(5), 825-835. doi:10.1189/jlb.3HI0814-371RR
    Liote, F., & Ea, H. K. (2006). Gout: update on some pathogenic and clinical aspects. Rheum Dis Clin North Am, 32(2), 295-311, vi. doi:10.1016/j.rdc.2006.03.001
    Maa, M. C., Lai, J. R., Lin, R. W., & Leu, T. H. (1999). Enhancement of tyrosyl phosphorylation and protein expression of eps8 by v-Src. Biochim Biophys Acta, 1450(3), 341-351.
    Martin, W. J., & Harper, J. L. (2009). Innate inflammation and resolution in acute gout. Immunology And Cell Biology, 88, 15. doi:10.1038/icb.2009.89
    Martinon, F., Pétrilli, V., Mayor, A., Tardivel, A., & Tschopp, J. (2006). Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature, 440, 237. doi:10.1038/nature04516
    Meylan, E., Tschopp, J., & Karin, M. (2006). Intracellular pattern recognition receptors in the host response. Nature, 442(7098), 39-44. doi:10.1038/nature04946
    Neogi, T., Hunter, D. J., Chaisson, C. E., Allensworth-Davies, D., & Zhang, Y. (2006). Frequency and predictors of inappropriate management of recurrent gout attacks in a longitudinal study. J Rheumatol, 33(1), 104-109.
    O'Neill, L. (2000). The Toll/interleukin-1 receptor domain: a molecular switch for inflammation and host defence. Biochem Soc Trans, 28(5), 557-563.
    Pittman, J. R., & Bross, M. H. (1999). Diagnosis and management of gout. American family physician, 59(7), 1799-1806, 1810.
    Popa-Nita, O., & Naccache, P. H. (2010). Crystal-induced neutrophil activation. Immunol Cell Biol, 88(1), 32-40. doi:10.1038/icb.2009.98
    Riteau, N., Baron, L., Villeret, B., Guillou, N., Savigny, F., Ryffel, B., . . . Couillin, I. (2012). ATP release and purinergic signaling: a common pathway for particle-mediated inflammasome activation. Cell Death &Amp; Disease, 3, e403. doi:10.1038/cddis.2012.144
    Schlesinger, N. (2007). Reassessing the safety of intravenous and compounded injectable colchicine in acute gout treatment. Expert Opin Drug Saf, 6(6), 625-629. doi:10.1517/14740338.6.6.625
    Schroder, K., & Tschopp, J. (2010). The inflammasomes. Cell, 140(6), 821-832. doi:10.1016/j.cell.2010.01.040
    Scita, G., Nordstrom, J., Carbone, R., Tenca, P., Giardina, G., Gutkind, S., . . . Di Fiore, P. P. (1999). EPS8 and E3B1 transduce signals from Ras to Rac. Nature, 401(6750), 290-293. doi:10.1038/45822
    So, A., & Busso, N. (2009). A magic bullet for gout? Annals of the Rheumatic Diseases, 68(10), 1517.
    So, A. K., & Martinon, F. (2017). Inflammation in gout: mechanisms and therapeutic targets. Nat Rev Rheumatol, 13(11), 639-647. doi:10.1038/nrrheum.2017.155
    Takeda, K., Kaisho, T., & Akira, S. (2003). Toll-like receptors. Annu Rev Immunol, 21, 335-376. doi:10.1146/annurev.immunol.21.120601.141126
    Terkeltaub, R., Zachariae, C., Santoro, D., Martin, J., Peveri, P., & Matsushima, K. (1991). Monocyte-derived neutrophil chemotactic factor/interleukin-8 is a potential mediator of crystal-induced inflammation. Arthritis Rheum, 34(7), 894-903.
    Vallabhapurapu, S., & Karin, M. (2009). Regulation and function of NF-kappaB transcription factors in the immune system. Annu Rev Immunol, 27, 693-733. doi:10.1146/annurev.immunol.021908.132641
    Vance, R. E. (2015). The NAIP/NLRC4 inflammasomes. Curr Opin Immunol, 32, 84-89. doi:10.1016/j.coi.2015.01.010
    von Moltke, J., Ayres, J. S., Kofoed, E. M., Chavarria-Smith, J., & Vance, R. E. (2013). Recognition of bacteria by inflammasomes. Annu Rev Immunol, 31, 73-106. doi:10.1146/annurev-immunol-032712-095944
    Watters, T. M., Kenny, E. F., & O'Neill, L. A. (2007). Structure, function and regulation of the Toll/IL-1 receptor adaptor proteins. Immunol Cell Biol, 85(6), 411-419. doi:10.1038/sj.icb.7100095
    Yu-Chen, P. (2014). The role of Eps8 in macrophages-stimulated colon cancer cell migration. (master degree), National Cheng Kung Unversity, Taiwan.
    Zhang, W., Doherty, M., Bardin, T., Pascual, E., Barskova, V., Conaghan, P., . . . Zimmermann-Gorska, I. (2006). EULAR evidence based recommendations for gout. Part II: Management. Report of a task force of the EULAR Standing Committee for International Clinical Studies Including Therapeutics (ESCISIT). Ann Rheum Dis, 65(10), 1312-1324. doi:10.1136/ard.2006.055269

    無法下載圖示 校內:2023-08-07公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE