| 研究生: |
詹立群 Jan, Li-Chun |
|---|---|
| 論文名稱: |
反算及最佳化控制法於三維鑽頭之研究 The Inverse and Optimal Control Methods for Three-Dimentional Drilling Problems |
| 指導教授: |
黃正弘
Huang, Cheng-Hung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 系統及船舶機電工程學系 Department of Systems and Naval Mechatronic Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 90 |
| 中文關鍵詞: | 急遽遞減法 、鑽頭 、最佳化 、反算法 |
| 外文關鍵詞: | SDM, Steepest Descent Method, Drilling, Optimal, Inverse Problem |
| 相關次數: | 點閱:75 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
對於一般工程問題而言,可依照輸入(Input source)、系統模組(System module)和輸出(Output response)三者,將其分成兩大類:(一)單純探討輸入系統的條件所產生的輸出結果;(二)利用已知的系統輸出結果與系統模組來反求其輸入的條件為何。而本論文所探討的問題即屬於第二類,我們也可以將其統稱為:反算問題(Inverse Problem)。
而在實際的工程問題中,由於受到許多客觀條件的限制,因此會有許多的物理量無法藉由直接量測或是計算求得,是故我們必須利用反算法來反求我們需要的參數及物理量。
本論文是利用反算法中的函數預測法又稱急遽遞減法(Steepest Descent Method),並結合商業軟體CFX 4.4來求解未知熱通量以及熱對流係數,其中共分為兩個章節:第二章為反算法於鑽頭之熱通量預測;第三章為反算法於鑽頭冷卻條件之最佳化控制研究。
第二章中利用反算法之急遽遞減法來預測鑽頭隨時間變化之熱通量,並對照實驗所量得之溫度以確保反算熱通量之正確性。由於鑽頭為一般實際工程上廣泛使用的一種切削工具,因此對於其切削面上熱通量之分佈也是研究的重點之ㄧ。論文首先利用數值分析的方式來探討在不同的量測誤差下,驗證所預測的精確度。然後再利用實驗所得的溫度分佈來反算實際工程處理時,鑽頭切削面上隨時間變化的熱通量分佈情形。而結果顯示吾人的確可以準確求得其未知熱通量函數。當實際之熱通量得到後,吾人可利用此結果及希望之鑽頭切削面上的溫度分佈來設計最有效率的冷卻方式,以減少切削過程中所產生的高熱。
第三章中利用前章所求得之熱通量函數當作已知值,來設計水道中最佳冷卻狀況。本章是依據在切削面(加熱面)上的設計溫度來對水道中的冷卻水之熱對流係數進行最佳化控制,進而得到最佳化控制的條件。
The applied heat flux on the drilling surface and the optimal cooling condition for the cooling passage of drilling tool are determined in this thesis based on the Steepest Descent Method (SDM) and a general purpose commercial code CFX4.4.
In chapter two, the inverse algorithm is applied successfully in a three-dimensional inverse heat conduction problem in estimating the applied heat flux for a drilling tool based on the measured temperature distributions with time at four sensors embedded on the drilling surfaces. The numerical experiments are considered at the first stage to illustrate the validity of inverse determination of the unknown heat flux using exact and error measurements. Experimental data are then used to estimate the actual heat flux along the drilling edge at two different drill peripheral cutting speeds. Results of both the numerical and experimental examinations show that the reliable estimated heat flux can be obtained by using the present inverse algorithm.
In chapter three, the effective time-dependent heat transfer coefficient of the cooling passage for drilling tool is obtained. The optimal control algorithm is applied successfully in this chapter. The optimization process is to minimize the residues between the design (or desired) and estimated temperatures on the drilling edges. Two different design temperature distributions are used to illustrate the validity of determining the effective heat transfer coefficients. Results of the numerical simulation show that the reliable effective heat transfer coefficients can be estimated by using the present optimal inverse design (or optimal control) algorithm.
CHAPTER 2:
1. P. G. Tucker, CFD Applied to Electronic
Systems A Review, IEEE Transactions
on Components Packaging and Manufacturing
Technology, Part A, 20 (1997) 518- 529.
2. CFX-4.4 User’s Manual, AEA Technology Plc,
Oxfordshire, U.K., 2001.
3. K. Sakurai, K. Adachi, T. Kamekawa, K. Ogawa
and S. Hanasaki,Intermittently Decelerated
Feed Drilling of Ti-6%Al-4%V Alloy,
Keikinzoku/Journal of Japan Institute of
Light Metals, 46 (1996) 138-143.
4. M. Arai and M. Ogawa, Effects of High
Pressure Supply of Cutting fluid in
Drilling of Titanium Alloy,Keikinzoku/Journal
of Japan Institute of Light
Metals, 47 (1997) 139-144.
5. J. Cantero, M. Tardío, J. Canteli, M. Marcos,
and M. Miguélez, Dry Drilling of Alloy Ti-6Al-
4V, International Journal of Machine Tools
and Manufacture, 45 (2005) 1246-1255.
6. J. Lin, S. L. Lee and C. I. Weng, Estimation
of Cutting Temperature in High Speed
Machining, Journal of Engineering Materials
and technology, 114(1992) 289-296.
7. C. H. Huang and S. P. Wang, A Three-
Dimensional Inverse Heat Conduction
Problem in Estimating Surface Heat Flux by
Conjugate Gradient Method, Int.
J. Heat and Mass Transfer, 42(1999) 3387-3403.
8. C. H. Huang and W. C. Chen, A Three-
Dimensional Inverse Forced Convection
Problem in Estimating Surface Heat Flux by
Conjugate Gradient Method, Int.
J. Heat and Mass Transfer, 43(2000) 3171-3181.
9. C. H. Huang and S. C. Cheng, A Three-
Dimensional Inverse Problem of
Estimating the Volumetric Heat Generation for
A Composite Material,Numerical Heat Transfer,
Part A, 39(2001) 383-403.
10.C. H. Huang and C. Y. Li, A Three-Dimensional
Optimal Control Problem in Determining the
Boundary Control Heat Fluxes, Heat and Mass
Transfer, 39(2003) 589-598.
11.C. H. Huang, I. C. Yuan and H. A. Ay , Three-
Dimensional Inverse Problem in Imaging the
Local Heat Transfer Coefficients for Plate
Finned-tube Heat Exchangers, Int. J. Heat and
Mass Transfer, 46 (2003) 3629-3638.
12.F.R.S. Lima, A.R. Machado, G. Guimaraes and
S. Guths, Numerical and Experimental
Simulation for Heat Flux and Cutting
Temperature Estimation Using Three-
Dimensional Inverse Heat Conduction
Technique, Inverse Problems in Engineering, 8
(2000) 553-577.
13.C. H. Huang and H. C. Lo, A Three-Dimensional
Inverse Problem in Predicting the Heat Fluxes
Distribution in the Cutting Tools, Numerical
Heat Transfer,
part A-Applications, 48 (2005) 1009-1034.
14.A. J. Shih and R. Li, Inverse Heat Transfer
Solution of Tool Temperature in Titanium
Drilling, Mechanical Engineering, University
of Michigan, Ann Arbor, MI 48109-2125.
15.O. M. Alifanov, Inverse Heat Transfer
Problem, Springer - Verlag, Berlin,1994.
16.O. M. Alifanov, Solution of an Inverse
Problem of Heat Conduction by Iteration
Methods, Journal of Engineering Physics, 26
(1974) 471-476.
17.A. N. Tikhonov and V. Y. Aresenin, Solution
of Ill Posed Problem, V. H. Wistom and Sons,
Washington, DC, 1997.
18.IMSL Library Edition 10.0. User’s Manual:
Math Library Version 1.0, IMSL,
Houston, TX, 1987.
CHAPTER 3:
1. 鄭友仁與王天毅,高性能金屬切削油切削效益研究,國
立中正大學機械工程學系機械工程研究所,2005.
2. M.Rahman, A.S. Kumar and M.R.Choudhury,
Identification of effective zones for high
pressure coolant in milling, CIRP Annals 49
(2000) 47-52.
3. A.S. Varadarajan, P. K.Philip and B.
Ramamoorthy, Invesigations on hard turning
with minimal cutting fluid application(HTMF)
and its comparison with dry and wet turning,
International Journal of Machine Tools &
Manufacture, 42(2002) 193-200.
4. T. Akasawa, H. Sakurai, M. Nakamura, T.
Tanaka and K. Takano, Effects of free-cutting
additives on the machinability of austenitic
stainless steels,Journal of Materials
Processing Technology, 143-144(2003) 66-71.
5. S. Kalidas, R. E.DeVor and S. Kapoor,
Experimental investigation of the effect of
drill coatings on hole quality under dry and
wet condition, Surface and Coatings
Technology, 148(2001) 117-128.
6. J.M. Vieira, A.R. Machado and E.O. EzugWu,
Performance of cutting fluids during face
milling of steels, Journal of Materials
Processing Technology, 116(2001) 244-251.
7. N.R. Dhar, S. Paul and A.B. Chattopadhay,
Machining of AISI 4140 steel under cryogenic
cooling-tool wear,surface roughness and
dimensional deviation, Journal of Materials
Processing Technology, 123(2002) 483-489.
8. S. Paul, A.B. Chattopadhay, Effects of
cryogenic cooling by liquid nitrogen jet on
forces, temperature and surface residual
stress in grinding steels, Cryogenics, 35
(1995) 515-523.
9. T. Jin and D.J Stephenson, Investigation of
the heat partitioning in high efficiency deep
grinding, International Journal of Machine
Tools and Manufacture, 43(2003) 1129-1134.
10.W.X. Lin and S.W. Armfield, Long-term
behavior of cooling fluid in a rectangular
container, Physical Review E , 69(2004).
11.H. Ni, M. Elmadagli and A.T. Alpas,
Mechanical properties and microstructures of
1100 aluminum subjected to dry machining,
Materials Science and Engineering A-Structure
Materials Properties Microstructure and
Processing, 385(2004) .
12.W.X. Lin and S.W. Armfield, Long-term
behavior of cooling fluid in a vertical
cylinder, International Journal of Heat and
Mass Transfer, 48(2005) 53-66.
13.V. Badescu, Optimal control of forced cool-
down processes, International Journal of Heat
and Mass Transfer, 48(2005) 741-748.
14.D.M. Haan, S.A. Batzer and W.W. Olson, An
experimental study of cutting fluid effects
in drilling, Journal of Materials Processing
Technology, 71(1997) 305-313.
15.P. D. RAO and W. W. OLSON, An experimental
investigation into the effect of cutting
fluid conditions on the boring of aluminum
alloys, Journal of manufacturing science and
engineering, 121(1999) 434-439.
16.G. LORENZ, Reliable cutting fluid rating,
International Institution for Production
Engineering Research annals, 34(1985) 95-99.
17.Kim and R. Byung, Aerobic treatment of metal-
cutting-fluid wastewater, Water environment
research, 64(1992) 258-62.
18.O. M. Alifanov, Inverse Heat Transfer
Problem, Springer - Verlag, Berlin, 1994.
19.O. M. Alifanov, Solution of an Inverse
Problem of Heat Conduction by Iteration
Methods, Journal of Engineering Physics, 26
(1974) 471-476.
20.A. N. Tikhonov and V. Y. Aresenin, Solution
of Ill Posed Problem, V. H. Wistom and Sons,
Washington, DC, 1997.
21.IMSL Library Edition 10.0. User’s Manual:
Math Library Version 1.0, IMSL, Houston, TX,
1987.