簡易檢索 / 詳目顯示

研究生: 詹立群
Jan, Li-Chun
論文名稱: 反算及最佳化控制法於三維鑽頭之研究
The Inverse and Optimal Control Methods for Three-Dimentional Drilling Problems
指導教授: 黃正弘
Huang, Cheng-Hung
學位類別: 碩士
Master
系所名稱: 工學院 - 系統及船舶機電工程學系
Department of Systems and Naval Mechatronic Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 90
中文關鍵詞: 急遽遞減法鑽頭最佳化反算法
外文關鍵詞: SDM, Steepest Descent Method, Drilling, Optimal, Inverse Problem
相關次數: 點閱:75下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 對於一般工程問題而言,可依照輸入(Input source)、系統模組(System module)和輸出(Output response)三者,將其分成兩大類:(一)單純探討輸入系統的條件所產生的輸出結果;(二)利用已知的系統輸出結果與系統模組來反求其輸入的條件為何。而本論文所探討的問題即屬於第二類,我們也可以將其統稱為:反算問題(Inverse Problem)。
    而在實際的工程問題中,由於受到許多客觀條件的限制,因此會有許多的物理量無法藉由直接量測或是計算求得,是故我們必須利用反算法來反求我們需要的參數及物理量。
    本論文是利用反算法中的函數預測法又稱急遽遞減法(Steepest Descent Method),並結合商業軟體CFX 4.4來求解未知熱通量以及熱對流係數,其中共分為兩個章節:第二章為反算法於鑽頭之熱通量預測;第三章為反算法於鑽頭冷卻條件之最佳化控制研究。
    第二章中利用反算法之急遽遞減法來預測鑽頭隨時間變化之熱通量,並對照實驗所量得之溫度以確保反算熱通量之正確性。由於鑽頭為一般實際工程上廣泛使用的一種切削工具,因此對於其切削面上熱通量之分佈也是研究的重點之ㄧ。論文首先利用數值分析的方式來探討在不同的量測誤差下,驗證所預測的精確度。然後再利用實驗所得的溫度分佈來反算實際工程處理時,鑽頭切削面上隨時間變化的熱通量分佈情形。而結果顯示吾人的確可以準確求得其未知熱通量函數。當實際之熱通量得到後,吾人可利用此結果及希望之鑽頭切削面上的溫度分佈來設計最有效率的冷卻方式,以減少切削過程中所產生的高熱。
    第三章中利用前章所求得之熱通量函數當作已知值,來設計水道中最佳冷卻狀況。本章是依據在切削面(加熱面)上的設計溫度來對水道中的冷卻水之熱對流係數進行最佳化控制,進而得到最佳化控制的條件。

    The applied heat flux on the drilling surface and the optimal cooling condition for the cooling passage of drilling tool are determined in this thesis based on the Steepest Descent Method (SDM) and a general purpose commercial code CFX4.4.
    In chapter two, the inverse algorithm is applied successfully in a three-dimensional inverse heat conduction problem in estimating the applied heat flux for a drilling tool based on the measured temperature distributions with time at four sensors embedded on the drilling surfaces. The numerical experiments are considered at the first stage to illustrate the validity of inverse determination of the unknown heat flux using exact and error measurements. Experimental data are then used to estimate the actual heat flux along the drilling edge at two different drill peripheral cutting speeds. Results of both the numerical and experimental examinations show that the reliable estimated heat flux can be obtained by using the present inverse algorithm.
    In chapter three, the effective time-dependent heat transfer coefficient of the cooling passage for drilling tool is obtained. The optimal control algorithm is applied successfully in this chapter. The optimization process is to minimize the residues between the design (or desired) and estimated temperatures on the drilling edges. Two different design temperature distributions are used to illustrate the validity of determining the effective heat transfer coefficients. Results of the numerical simulation show that the reliable effective heat transfer coefficients can be estimated by using the present optimal inverse design (or optimal control) algorithm.

    摘 要................................................................................... I 英文摘要...................................................................................III 誌 謝.................................................................................. IV 目 錄...................................................................................V 圖 目 錄..................................................................................VIII 符號說明.................................................................................. XI 第一章 緒 論......................................................................... 1 1-1 研究背景與目的..................................................................... 1 1-2 文獻回顧................................................................................. 3 第二章 反算法於三維鑽頭之熱通量預測.............................. 6 2-1 直接解問題 (The Direct Problem)......................................... 7 2-2 反算問題 (The Inverse Problem)........................................... 9 2-3 急遽遞減法之極小化過程 (Steepest Descent Method for Minimization ).................................................... 10 2-4 靈敏性問題與前進步距 (Sensitivity Problem and Search Step Size)............................................................ 11 2-5 伴隨問題與梯度方程式 (Adjoint Problem and Gradient Equation).................................................................. 13 2-6 收斂條件 (Stopping Criterion)............................................. 15 2-7 數值計算流程 (Computational Procedure).......................... 16 2-8 實驗設備及設置 (Experimental Setup)............................... 17 2-9 結果與討論 (Results and Discussion)................................... 19 2-9-1 數值模擬 (Numerical Experiments)...................................... 20 2-9-2 實驗驗證 (Experimental Analysis)........................................ 22 2-10 結論 (Conclusions)................................................................. 25 參考文獻................................................................................................. 43 第三章 最佳化控制法於三維鑽頭冷卻條件預測之研究... 46 3-1 研究背景與目的..................................................................... 46 3-2 文獻回顧................................................................................. 48 3-3 直接解問題 (The Direct Problem)........................................ 50 3-4 最佳化控制問題 (The Optimal Control Problem)............... 52 3-5 急遽遞減法之極小化過程 (Steepest Descent Method for Minimization ).................................................... 53 3-6 靈敏性問題與前進步距 (Sensitivity Problem and Search Step Size)............................................................. 54 3-7 伴隨問題與梯度方程式 (Adjoint Problem and Gradient Eqation)................................................................... 56 3-8 有效最佳熱對流係數 (The Effective Optimal Heat Transfer Coefficient).............................................................. 58 3-9 強制熱對流係數之計算 (The Calculation of Heat Transfer Coefficient).............................................................. 59 3-10 數值計算流程 (Computational Procedure)........................... 60 3-11 結果與討論 (Results and Discussion).................................. 61 3-12 結論 (Conclusions)............................................................... 66 參考文獻.................................................................................................85 第四章 結 語................................................................................. 88 圖 目 錄 圖2-1 鑽頭實驗設備及設置圖........................................................... 26 圖2-2 鑽頭之幾何形狀與網格分佈圖...............................................27 圖2-3 鑽頭切削面之幾何形狀........................................................... 28 圖2-4 鑽頭切削面之感測器位置分佈圖........................................... 29 圖2-5 範例一,當 = 0 oC時正解及預測之平均熱通量 分佈曲線................................................................................... 30 圖2-6 範例一,當 = 0 oC時量測與預測之溫度曲線圖................ 31 圖2-7 範例一,當 = 0 oC,t=14秒時預測之溫度分佈圖............. 32 圖2-8 範例一,當 = 2 oC時正解與預測之平均熱通量 分佈曲線................................................................................... 33 圖2-9 範例一,當 = 5 oC時正解與預測之平均熱通量 分佈曲線................................................................................... 34 圖2-10 範例二,轉速為780 rpm時,利用兩組量測值所 預測之平均熱通量曲線圖....................................................... 35 圖2-11 範例二,轉速為780 rpm, t=19.2秒時之溫度分佈圖....... 36 圖2-12 範例二,(1) TC1、TC2、TC3及TC4四點之量測 與預測之溫度曲線圖...............................................................37 圖2-13 範例二,(2) TC1、TC3、TC4及TC2四點之量測 與預測之溫度曲線圖...............................................................38 圖2-14 範例二,轉速為2350 rpm時,利用兩組量測值所 預測之平均熱通量曲線圖....................................................... 39 圖2-15 範例二,轉速為2350 rpm, t=6.4秒時之溫度分佈圖....... 40 圖2-16 範例二,(1)TC1、TC2、TC3以及TC4四點之量測 與預測之溫度曲線圖............................................................... 41 圖2-17 範例二,(2)TC1、TC3、TC4以及TC2四點之量測 與預測之溫度曲線圖............................................................... 42 圖3-1 鑽頭之幾何形狀與網格分佈圖...............................................68 圖3-2 鑽頭冷卻水道網格分佈圖....................................................... 69 圖3-3 加熱面與P1位置示意圖.......................................................... 70 圖3-4 範例一中當設計降溫為2K時,於點P1之溫度 隨時間變化圖........................................................................... 71 圖3-5 範例一中當設計降溫為5K時,於點P1之溫度 隨時間變化圖........................................................................... 72 圖3-6 範例一中當設計降溫為10K時,於點P1之溫度 隨時間變化圖...........................................................................73 圖3-7 範例一中在t=1.5秒後,設計降溫為2K、5K及10K 時之預測熱對流係數分佈圖................................................... 74 圖3-8 範例一中設計降溫為2K,且t=3.0秒時 (a)設計及(b)預測之溫度變化分佈圖。.................................. 75 圖3-9 範例一中設計降溫為5K,且t=3.0秒時 (a)設計及(b)預測之溫度變化分佈圖。..................................76 圖3-10 範例一中設計降溫為10K,且t=3.0秒時 (a)設計及(b)預測之溫度變化分佈圖。.................................. 77 圖3-11 範例二中當設計降溫為2K時,於點P1之溫度 隨時間變化圖...........................................................................78 圖3-12 範例二中當設計降溫為5K時,於點P1之溫度 隨時間變化圖...........................................................................79 圖3-13 範例二中當設計降溫為10K時,於點P1之溫度 隨時間變化圖...........................................................................80 圖3-14 範例二中在t=2.5秒後設計降溫為2K、5K及10K 時之預測熱對流係數分佈圖................................................... 81 圖3-15 範例二中設計降溫為2K,且t=4.0秒時 (a)設計及(b)預測之溫度變化分佈圖。.................................. 82 圖3-16 範例二中設計降溫為5K,且t=4.0秒時 (a)設計及(b)預測之溫度變化分佈圖。.................................. 83 圖3-17 範例二中設計降溫為10K,且t=4.0秒時 (a)設計及(b)預測之溫度變化分佈圖。.................................. 84

    CHAPTER 2:
    1. P. G. Tucker, CFD Applied to Electronic
    Systems A Review, IEEE Transactions
    on Components Packaging and Manufacturing
    Technology, Part A, 20 (1997) 518- 529.
    2. CFX-4.4 User’s Manual, AEA Technology Plc,
    Oxfordshire, U.K., 2001.
    3. K. Sakurai, K. Adachi, T. Kamekawa, K. Ogawa
    and S. Hanasaki,Intermittently Decelerated
    Feed Drilling of Ti-6%Al-4%V Alloy,
    Keikinzoku/Journal of Japan Institute of
    Light Metals, 46 (1996) 138-143.
    4. M. Arai and M. Ogawa, Effects of High
    Pressure Supply of Cutting fluid in
    Drilling of Titanium Alloy,Keikinzoku/Journal
    of Japan Institute of Light
    Metals, 47 (1997) 139-144.
    5. J. Cantero, M. Tardío, J. Canteli, M. Marcos,
    and M. Miguélez, Dry Drilling of Alloy Ti-6Al-
    4V, International Journal of Machine Tools
    and Manufacture, 45 (2005) 1246-1255.
    6. J. Lin, S. L. Lee and C. I. Weng, Estimation
    of Cutting Temperature in High Speed
    Machining, Journal of Engineering Materials
    and technology, 114(1992) 289-296.
    7. C. H. Huang and S. P. Wang, A Three-
    Dimensional Inverse Heat Conduction
    Problem in Estimating Surface Heat Flux by
    Conjugate Gradient Method, Int.
    J. Heat and Mass Transfer, 42(1999) 3387-3403.
    8. C. H. Huang and W. C. Chen, A Three-
    Dimensional Inverse Forced Convection
    Problem in Estimating Surface Heat Flux by
    Conjugate Gradient Method, Int.
    J. Heat and Mass Transfer, 43(2000) 3171-3181.
    9. C. H. Huang and S. C. Cheng, A Three-
    Dimensional Inverse Problem of
    Estimating the Volumetric Heat Generation for
    A Composite Material,Numerical Heat Transfer,
    Part A, 39(2001) 383-403.
    10.C. H. Huang and C. Y. Li, A Three-Dimensional
    Optimal Control Problem in Determining the
    Boundary Control Heat Fluxes, Heat and Mass
    Transfer, 39(2003) 589-598.
    11.C. H. Huang, I. C. Yuan and H. A. Ay , Three-
    Dimensional Inverse Problem in Imaging the
    Local Heat Transfer Coefficients for Plate
    Finned-tube Heat Exchangers, Int. J. Heat and
    Mass Transfer, 46 (2003) 3629-3638.
    12.F.R.S. Lima, A.R. Machado, G. Guimaraes and
    S. Guths, Numerical and Experimental
    Simulation for Heat Flux and Cutting
    Temperature Estimation Using Three-
    Dimensional Inverse Heat Conduction
    Technique, Inverse Problems in Engineering, 8
    (2000) 553-577.
    13.C. H. Huang and H. C. Lo, A Three-Dimensional
    Inverse Problem in Predicting the Heat Fluxes
    Distribution in the Cutting Tools, Numerical
    Heat Transfer,
    part A-Applications, 48 (2005) 1009-1034.
    14.A. J. Shih and R. Li, Inverse Heat Transfer
    Solution of Tool Temperature in Titanium
    Drilling, Mechanical Engineering, University
    of Michigan, Ann Arbor, MI 48109-2125.
    15.O. M. Alifanov, Inverse Heat Transfer
    Problem, Springer - Verlag, Berlin,1994.
    16.O. M. Alifanov, Solution of an Inverse
    Problem of Heat Conduction by Iteration
    Methods, Journal of Engineering Physics, 26
    (1974) 471-476.
    17.A. N. Tikhonov and V. Y. Aresenin, Solution
    of Ill Posed Problem, V. H. Wistom and Sons,
    Washington, DC, 1997.
    18.IMSL Library Edition 10.0. User’s Manual:
    Math Library Version 1.0, IMSL,
    Houston, TX, 1987.

    CHAPTER 3:
    1. 鄭友仁與王天毅,高性能金屬切削油切削效益研究,國
    立中正大學機械工程學系機械工程研究所,2005.
    2. M.Rahman, A.S. Kumar and M.R.Choudhury,
    Identification of effective zones for high
    pressure coolant in milling, CIRP Annals 49
    (2000) 47-52.
    3. A.S. Varadarajan, P. K.Philip and B.
    Ramamoorthy, Invesigations on hard turning
    with minimal cutting fluid application(HTMF)
    and its comparison with dry and wet turning,
    International Journal of Machine Tools &
    Manufacture, 42(2002) 193-200.
    4. T. Akasawa, H. Sakurai, M. Nakamura, T.
    Tanaka and K. Takano, Effects of free-cutting
    additives on the machinability of austenitic
    stainless steels,Journal of Materials
    Processing Technology, 143-144(2003) 66-71.
    5. S. Kalidas, R. E.DeVor and S. Kapoor,
    Experimental investigation of the effect of
    drill coatings on hole quality under dry and
    wet condition, Surface and Coatings
    Technology, 148(2001) 117-128.
    6. J.M. Vieira, A.R. Machado and E.O. EzugWu,
    Performance of cutting fluids during face
    milling of steels, Journal of Materials
    Processing Technology, 116(2001) 244-251.
    7. N.R. Dhar, S. Paul and A.B. Chattopadhay,
    Machining of AISI 4140 steel under cryogenic
    cooling-tool wear,surface roughness and
    dimensional deviation, Journal of Materials
    Processing Technology, 123(2002) 483-489.
    8. S. Paul, A.B. Chattopadhay, Effects of
    cryogenic cooling by liquid nitrogen jet on
    forces, temperature and surface residual
    stress in grinding steels, Cryogenics, 35
    (1995) 515-523.
    9. T. Jin and D.J Stephenson, Investigation of
    the heat partitioning in high efficiency deep
    grinding, International Journal of Machine
    Tools and Manufacture, 43(2003) 1129-1134.
    10.W.X. Lin and S.W. Armfield, Long-term
    behavior of cooling fluid in a rectangular
    container, Physical Review E , 69(2004).
    11.H. Ni, M. Elmadagli and A.T. Alpas,
    Mechanical properties and microstructures of
    1100 aluminum subjected to dry machining,
    Materials Science and Engineering A-Structure
    Materials Properties Microstructure and
    Processing, 385(2004) .
    12.W.X. Lin and S.W. Armfield, Long-term
    behavior of cooling fluid in a vertical
    cylinder, International Journal of Heat and
    Mass Transfer, 48(2005) 53-66.
    13.V. Badescu, Optimal control of forced cool-
    down processes, International Journal of Heat
    and Mass Transfer, 48(2005) 741-748.
    14.D.M. Haan, S.A. Batzer and W.W. Olson, An
    experimental study of cutting fluid effects
    in drilling, Journal of Materials Processing
    Technology, 71(1997) 305-313.
    15.P. D. RAO and W. W. OLSON, An experimental
    investigation into the effect of cutting
    fluid conditions on the boring of aluminum
    alloys, Journal of manufacturing science and
    engineering, 121(1999) 434-439.
    16.G. LORENZ, Reliable cutting fluid rating,
    International Institution for Production
    Engineering Research annals, 34(1985) 95-99.
    17.Kim and R. Byung, Aerobic treatment of metal-
    cutting-fluid wastewater, Water environment
    research, 64(1992) 258-62.
    18.O. M. Alifanov, Inverse Heat Transfer
    Problem, Springer - Verlag, Berlin, 1994.
    19.O. M. Alifanov, Solution of an Inverse
    Problem of Heat Conduction by Iteration
    Methods, Journal of Engineering Physics, 26
    (1974) 471-476.
    20.A. N. Tikhonov and V. Y. Aresenin, Solution
    of Ill Posed Problem, V. H. Wistom and Sons,
    Washington, DC, 1997.
    21.IMSL Library Edition 10.0. User’s Manual:
    Math Library Version 1.0, IMSL, Houston, TX,
    1987.

    下載圖示 校內:2007-08-09公開
    校外:2007-08-09公開
    QR CODE