| 研究生: |
蔡濰名 Tsai, Wei-Ming |
|---|---|
| 論文名稱: |
在固定床反應器中以Co3O4/Al2O3探討低溫觸媒氧化處理苯乙烯之研究 Catalytic Oxidation of Styrene by Co3O4/Al2O3 at Low Temperature in a Fixed Bed Reactor |
| 指導教授: |
朱信
Chu, Hsin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 英文 |
| 論文頁數: | 136 |
| 中文關鍵詞: | 催化氧化 、鈷基催化劑 、固定床反應器 、苯乙烯 |
| 外文關鍵詞: | Catalytic oxidation, Co-based catalyst, Fixed bed reactor, Styrene |
| 相關次數: | 點閱:104 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在這項研究中,選擇了一種典型的芳香族VOCs苯乙烯作為目標汙染物。建立催化氧化反應苯乙烯的固定床反應器系統,並採用臨濕含浸法製備的一系列不同種類催化劑,在基準條件(100 ppm苯乙烯、10,000 hr-1和21% O2)下與苯乙烯反應,其中Co3O4/Al2O3效率最高,Co3O4之最佳比例為30 wt%。在TGA實驗中,Co(NO3)2·6H2O在400°C通以空氣鍛燒的條件下重量降低到原先的27.6%。接著採用30 wt% Co3O4/Al2O3催化劑與模擬苯乙烯廢氣在不同反應條件下反應,測試催化劑在不同操作條件(苯乙烯濃度、空間流速、氧氣濃度)下的反應性。在參數實驗中,結果顯示由於活性點位飽和,催化劑的轉化率會隨著苯乙烯濃度的增加而降低。當空間流速變低時,相同溫度下的苯乙烯轉化率越來越高,在較低溫度下活性點位達到飽和。在氧氣濃度的參數實驗當中,除了0% O2外,其他比例的氧濃度條件下苯乙烯轉化率幾乎相同,因為1%的氧氣已能滿足100 ppm苯乙烯氧化所需要的氧氣含量。在失活試驗中,研究了在150、175和200°C下催化性能的退化。之後,通過XRD、BET、SEM、SEM-EDS和EA研究了催化劑使用前後的差異。結果顯示,30 wt%的Co3O4/Al2O3在催化失活試驗後仍處於Co3O4狀態。該催化劑在反應溫度從150℃提高到200℃時具有更優異的耐久性,並且在較高溫度下可以減少氧化苯乙烯引起的積碳。
In this study, one of typical aromatic VOCs, styrene was chosen as the target pollutant. A fixed bed reactor system for catalytic oxidation of styrene was established. A series of different types of catalysts were prepared by incipient wetness impregnation method. The prepared catalysts were reacted with styrene in a fixed bed reactor under a basic condition (100 ppm styrene, 10,000 hr-1 and 21% O2). Co3O4/Al2O3 was the most effective catalyst among them, and the optimal content of Co3O4 was 30 wt%. In TGA experiment, the weight of Co(NO3)2·6H2O was reduced to 27.6% by air in 400°C. The 30 wt% Co3O4/Al2O3 catalyst was used to react with simulated styrene exhaust gas to investigate the activity of catalyst under various operation conditions. In parameter experiments, results showed that conversion of styrene by 30 wt% Co3O4/Al2O3 would decrease with increasing styrene concentration due to their active sites saturation. When space velocity became lower, the conversions at the same temperature were getting higher and reached saturation at lower temperature. In the parameter experiment of oxygen concentration, except for 0% O2, the conversion remained almost the same under all other oxygen concentration, because 1% oxygen already meets the oxygen content required for 100 ppm styrene oxidation. In the deactivation test, the degradation of catalytic performance at 150, 175, and 200°C was studied. After that, the properties difference before and after the use of the catalyst by XRD, BET, SEM, SEM-EDS and EA were investigated. The results showed that the 30 wt% Co3O4/Al2O3 was still in the Co3O4 state after the catalytic deactivation test. The catalyst had better durability when the operating temperature was raised from 150°C to 200°C, because it could reduce the carbon deposition caused by partial oxidation of styrene at higher temperature.
Bartholomew, C. H. (2001). Mechanisms of catalyst deactivation. Applied Catalysis A.
Chen, C., Xie, H., He, P., Liu, X., Yang, C., Wang, N., & Ge, C. (2022). Comparison of low-temperature catalytic activity and H2O/SO2 resistance of the Ce-Mn/TiO2 NH3-SCR catalysts prepared by the reverse co-precipitation, co-precipitation and impregnation method. Applied Surface Science, 571.
Chen, X., Yu, S., Liu, W., Zhang, S., Liu, S., Feng, Y., & Zhang, X. (2022). Recent advance on cobalt-based oxide catalyst for the catalytic removal of volatile organic compounds: A review. Resources Chemicals and Materials, 1(1), 27-46.
Dey, S., Dhal, G. C., Mohan, D., & Prasad, R. (2017). Kinetics of catalytic oxidation of carbon monoxide over CuMnAgOx catalyst. Materials Discovery, 8, 18-25.
Elyasi, S., Fallah, N., Bonakdarpour, B., Mahboubi, A., & Taherzadeh, M. J. (2021). The effect of temperature and styrene concentration on biogas production and degradation characteristics during anaerobic removal of styrene from wastewater. Bioresour Technol, 342, 125988.
Feng, S., Liu, J., & Gao, B. (2022). Synergistic mechanism of Cu-Mn-Ce oxides in mesoporous ceramic base catalyst for VOCs microwave catalytic combustion. Chemical Engineering Journal, 429.
Grabowski, R. (2006). Kinetics of Oxidative Dehydrogenation of C2‐C3Alkanes on Oxide Catalysts. Catalysis Reviews, 48(2), 199-268.
Guo, X., Wu, H., Chen, D., Ye, Z., Shen, Y., Liu, J., & Cheng, S. (2020). Estimation and prediction of pollutant emissions from agricultural and construction diesel machinery in the Beijing-Tianjin-Hebei (BTH) region, China(). Environ Pollut, 260, 113973.
Guo, Y., Wen, M., Li, G., & An, T. (2021). Recent advances in VOC elimination by catalytic oxidation technology onto various nanoparticles catalysts: a critical review. Applied Catalysis B: Environmental, 281.
Hage, D. S. (2018). Chromatography. In Principles and Applications of Clinical Mass Spectrometry (pp. 1-32).
Haukka, S., Lakomaa, E. L., & Suntola, T. (1999). Adsorption controlled preparation of heterogeneous catalysts. In Adsorption and its Applications in Industry and Environmental Protection - Vol.I: Applications in Industry (pp. 715-750).
He, C., Cheng, J., Zhang, X., Douthwaite, M., Pattisson, S., & Hao, Z. (2019). Recent Advances in the Catalytic Oxidation of Volatile Organic Compounds: A Review Based on Pollutant Sorts and Sources. Chem Rev, 119(7), 4471-4568.
He, L., Fan, Y., Bellettre, J., Yue, J., & Luo, L. (2020). A review on catalytic methane combustion at low temperatures: Catalysts, mechanisms, reaction conditions and reactor designs. Renewable and Sustainable Energy Reviews, 119.
Hong-Li, W., Sheng-Ao, J., Sheng-Rong, L., Qing-Yao, H., Li, L., Shi-Kang, T., Cheng, H., Li-Ping, Q., & Chang-Hong, C. (2017). Volatile organic compounds (VOCs) source profiles of on-road vehicle emissions in China. Sci Total Environ, 607-608, 253-261.
Hot, J., Ringot, E., Koufi, L., & Bertron, A. (2021). Modelling of NO photocatalytic degradation in an experimental chamber. Chemical Engineering Journal, 408, 127298.
Jiang, N., Zhao, Y., Qiu, C., Shang, K., Lu, N., Li, J., Wu, Y., & Zhang, Y. (2019). Enhanced catalytic performance of CoO -CeO2 for synergetic degradation of toluene in multistage sliding plasma system through response surface methodology (RSM). Applied Catalysis B: Environmental, 259.
Kamal, M. S., Razzak, S. A., & Hossain, M. M. (2016). Catalytic oxidation of volatile organic compounds (VOCs) – A review. Atmospheric Environment, 140, 117-134.
Khuzwayo, Z., & Chirwa, E. M. N. (2015). Modelling and simulation of photocatalytic oxidation mechanism of chlorohalogenated substituted phenols in batch systems: Langmuir-Hinshelwood approach. J Hazard Mater, 300, 459-466.
Lee, J. E., Ok, Y. S., Tsang, D. C. W., Song, J., Jung, S.-C., & Park, Y.-K. (2020). Recent advances in volatile organic compounds abatement by catalysis and catalytic hybrid processes: A critical review. Science of The Total Environment, 719, 137405.
Liotta, L. F., Di Carlo, G., Pantaleo, G., & Deganello, G. (2007). Catalytic performance of Co3O4/CeO2 and Co3O4/CeO2–ZrO2 composite oxides for methane combustion: Influence of catalyst pretreatment temperature and oxygen concentration in the reaction mixture. Applied Catalysis B: Environmental, 70(1-4), 314-322.
Liu, Y., Qiu, P., Li, C., Li, X., Ma, W., Yin, S., Yu, Q., Li, J., & Liu, X. (2022). Evolution and variations of atmospheric VOCs and O3 photochemistry during a summer O3 event in a county-level city, Southern China. Atmospheric Environment.
Lu, F., Shen, B., Li, S., Liu, L., Zhao, P., & Si, M. (2021). Exposure characteristics and risk assessment of VOCs from Chinese residential cooking. J Environ Manage, 289, 112535.
Luderer, U., Collins, T. F., Daston, G. P., Fischer, L. J., Gray, R. H., Mirer, F. E., Olshan, A. F., Setzer, R. W., Treinen, K. A., & Vermeulen, R. (2006). NTP-CERHR Expert Panel Report on the reproductive and developmental toxicity of styrene. Birth Defects Res B Dev Reprod Toxicol, 77(2), 110-193.
Martyr, A. J., & Plint, M. A. (2012). Engine Exhaust Emissions. In Engine Testing (pp. 407-450).
Mehrbod, M., Martinelli, M., Castro, J. D., Alhraki, N., Cronauer, D. C., Kropf, A. J., Marshall, C. L., & Jacobs, G. (2021). Fischer-Tropsch synthesis: Direct cobalt nitrate reduction of promoted Co/Al2O3 catalysts. Catalysis Today, 369, 129-143.
Mora-Briseño, P., Jiménez-García, G., Castillo-Araiza, C.-O., González-Rodríguez, H., Huirache-Acuña, R., & Maya-Yescas, R. (2019). Mars van Krevelen Mechanism for the Selective Partial Oxidation of Ethane. International Journal of Chemical Reactor Engineering, 17(7).
Moshiran, V. A., Karimi, A., Golbabaei, F., Yarandi, M. S., Sajedian, A. A., & Koozekonan, A. G. (2021). Quantitative and Semiquantitative Health Risk Assessment of Occupational Exposure to Styrene in a Petrochemical Industry. Saf Health Work, 12(3), 396-402.
Mu, X., Ding, H., Pan, W., Zhou, Q., Du, W., Qiu, K., Ma, J., & Zhang, K. (2021). Research progress in catalytic oxidation of volatile organic compound acetone. Journal of Environmental Chemical Engineering, 9(4).
Pubchem. (2022). Styrene. https://pubchem.ncbi.nlm.nih.gov/compound/Styrene
Rajaei, H., Amin, A., Golchehre, A., & Esmaeilzadeh, F. (2012). Investigation on the effect of different supercritical fluid extraction process on the activation of the R-134 catalyst. The Journal of Supercritical Fluids, 67, 1-6.
Rodríguez, E., Félix, G., Ancheyta, J., & Trejo, F. (2018). Modeling of hydrotreating catalyst deactivation for heavy oil hydrocarbons. Fuel, 225, 118-133.
Sha, Q., Zhu, M., Huang, H., Wang, Y., Huang, Z., Zhang, X., Tang, M., Lu, M., Chen, C., Shi, B., Chen, Z., Wu, L., Zhong, Z., Li, C., Xu, Y., Yu, F., Jia, G., Liao, S., Cui, X., . . . Zheng, J. (2021). A newly integrated dataset of volatile organic compounds (VOCs) source profiles and implications for the future development of VOCs profiles in China. Sci Total Environ, 793, 148348.
Sietsma, J. R. A., Jos van Dillen, A., de Jongh, P. E., & de Jong, K. P. (2006). Application of ordered mesoporous materials as model supports to study catalyst preparation by impregnation and drying. In Scientific Bases for the Preparation of Heterogeneous Catalysts (pp. 95-102).
SIRC. (2022). Styrene Information & Reserch Center. https://styrene.org/about-styrene/
US.EPA. (2022). Volatile Organic Compounds Impact on Indoor Air Quality. https://www.epa.gov/indoor-air-quality-iaq/volatile-organic-compounds-impact-indoor-air-quality#Health_Effects
Wang, L., Li, Y., Liu, J., Tian, Z., & Jing, Y. (2021). Regulation of oxygen vacancies in cobalt-cerium oxide catalyst for boosting decontamination of VOCs by catalytic oxidation. Separation and Purification Technology, 277.
Wang, M., Qin, W., Chen, W., Zhang, L., Zhang, Y., Zhang, X., & Xie, X. (2020). Seasonal variability of VOCs in Nanjing, Yangtze River delta: Implications for emission sources and photochemistry. Atmospheric Environment, 223.
Wei, L.-g., Guo, R.-t., Zhou, J., Qin, B., Chen, X., Bi, Z.-x., & Pan, W.-g. (2022). Chemical deactivation and resistance of Mn-based SCR catalysts for NOx removal from stationary sources. Fuel, 316.
Widmann, D., & Behm, R. J. (2018). Dynamic surface composition in a Mars-van Krevelen type reaction: CO oxidation on Au/TiO2. Journal of Catalysis, 357, 263-273.
Xu, H., Li, Y., Feng, R., He, K., Ho, S. S. H., Wang, Z., Ho, K. F., Sun, J., Chen, J., Wang, Y., Liu, Y., Wang, F., Xue, W., Qu, L., Shen, Z., & Cao, J. (2021). Comprehensive characterization and health assessment of occupational exposures to volatile organic compounds (VOCs) in Xi'an, a major city of northwestern China. Atmospheric Environment, 246.
Yan, Y., Wang, Z., Ding, T., & Zhang, H. (2022). Preparation and application of Co3O4 catalysts from ZIF-67 membranes over paper-like stainless steel fibers in isopropanol combustion. Journal of Solid State Chemistry.
Yang, C., Miao, G., Pi, Y., Xia, Q., Wu, J., Li, Z., & Xiao, J. (2019). Abatement of various types of VOCs by adsorption/catalytic oxidation: A review. Chemical Engineering Journal, 370, 1128-1153.
Yang, Y., Wang, G., Fang, D., Han, J., Dang, F., & Yang, M. (2020). Study of the use of a Pd–Pt-based catalyst for the catalytic combustion of storage tank VOCs. International Journal of Hydrogen Energy, 45(43), 22732-22743.
Yuan, C. S., Cheng, W. H., & Huang, H. Y. (2022). Spatiotemporal distribution characteristics and potential sources of VOCs at an industrial harbor city in southern Taiwan: Three-year VOCs monitoring data analysis. J Environ Manage, 303, 114259.
Zhang, K., Ding, H., Pan, W., Mu, X., Qiu, K., Ma, J., Zhao, Y., Song, J., & Zhang, Z. (2022). Research Progress of a Composite Metal Oxide Catalyst for VOC Degradation. Environ Sci Technol.
Zhang, Z., Jiang, Z., & Shangguan, W. (2016). Low-temperature catalysis for VOCs removal in technology and application: A state-of-the-art review. Catalysis Today, 264, 270-278.
Zhang, Z., Xiang, L., Lin, F., Wang, Z., Yan, B., & Chen, G. (2021). Catalytic deep degradation of Cl-VOCs with the assistance of ozone at low temperature over MnO2 catalysts. Chemical Engineering Journal, 426.
Zheng, L., Zhang, T., & Yu, X. (2019). Recognition of Handwritten Chemical Organic Ring Structure Symbols Using Convolutional Neural Networks 2019 International Conference on Document Analysis and Recognition Workshops (ICDARW),
石家聲. (2021). "以Mn2O3/Al2SiO5固定床反應器探討低溫下觸媒氧化苯乙烯之研究." 成功大學環境工程學系碩士論文
李晉德. (2018). "以流體化床反應器探討H2S對鐵系載氧體於化學環路燃燒合成氣之影響." 成功大學環境工程學系碩士論文
曾庭科. (1998). "以MnO/Fe2O3觸媒焚化處理苯乙烯之研究." 成功大學環境工程學系碩士論文
校內:2027-08-04公開