簡易檢索 / 詳目顯示

研究生: 林季誼
Lin, Chi-yi
論文名稱: 應用於三維與四維動態超音波影像之肌肉運動追蹤
Muscular Motion Tracking from 3D and 4D Ultrasonic Image Sequences
指導教授: 孫永年
Sun, Yung-nien
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 122
中文關鍵詞: 三維動態超音波影像四維動態超音波影像肌肉運動追蹤多重特徵區塊比對
外文關鍵詞: muscular motion tracking, multi-feature block matching, 3D ultrasonic image sequences, 4D ultrasonic image sequences
相關次數: 點閱:100下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在復健醫學領域中,量測肌肉組織的運動情形是評估治療效果時的重要依據。在本論文中,我們利用超音波影像分析技術來作肌肉運動的追蹤,提出了兩種不同的追蹤方法分別應用在三維與四維動態超音波影像上。所提出的多重特徵區塊比對法是以影像灰階、運動速度、鄰域關係與選取特徵為基礎建構在多階層架構中,使影像追蹤達到準確度的提升與維持空間適應性。一般傳統的相關係數計算無法解決追蹤影像上特徵均一區域時模糊化所產生的比對誤差,利用多重選取特徵就可以先找出影像中的利於追蹤的特徵顯著區域,藉由參考特徵顯著區域的運動估測,便可輔助特徵均一區域的追蹤。在三維動態超音波影像的運動估測中,我們將提出的以多重樣板所作的多重特徵區塊比對結合特徵顯著鄰域與卡爾曼(Kalman)預測,來解決特徵均一區域的追蹤問題。而在四維超音波動態影像中,由於肌肉組織缺乏可以界定的邊界,為了將肌肉組織的運動量化,我們以追蹤肌膜組織的前端作為肌肉運動的量測標準,在肌肉運動模型中使用多階層的多重特徵區塊比對法結合切面微調與漂移校正,來適用於超音波體積影像的模糊特性以及因為低取像頻率所造成的影像劇烈形變。所提出的三維與四維動態超音波影像追蹤方法都以活體肌肉骨骼超音波影像作驗證,並與醫生的評估做比對。本論文所提出的方法可用於量化復健治療的效果,例如運動傷害時的療效評估。

    The quantitative evaluation of muscular motion is an important index for rehabilitation biomechanics. For the clinical applications on 3D (2D+t) and 4D (3D+t) ultrasonic image sequences respectively, we propose two distinct multi-feature block-matching-based tracking methodologies to estimate muscular motion. The proposed multi-feature block matching methods in multilevel frame work achieve high accuracy and spatial adaptability through considering image intensity, motion velocity, neighbor relativity and selected features. By using multiple selected features, the discriminating region can be determined and provides a confident motion reference for homogeneous region tracking to overcome the motion ambiguity, which the traditional correlation coefficient measurement is extremely suffered from. In 3D motion tracking, the problem of region homogeneity can be handled by the proposed multi-feature block matching in multi-template framework combined with good discriminative neighbor reference and Kalman prediction. To quantify motion of borderless musculature from 4D image sequences, the end of fascia is chosen as target and tracked by multilevel multi-feature block matching with sectional adjustment and drift correction on a muscular motion model. The tolerance for image fuzziness and tissue deformation at low frame rate is effectively increased in the 4D estimation. In the experimental results, the accuracy in both methods is validated from in vivo musculoskeletal ultrasonic image sequences by comparing the results with the doctor-defined ground truth. This study can be applied to clinical diagnosis, such as sport injuries.

    1 INTRODUCTION 1 1.1 MOTIVATION 1 1.2 RELATIVE WORK 6 1.3 SECTION OVERVIEW 9 2 MATERIALS 13 2.1 3D ULTRASOUND IMAGING 13 2.2 4D ULTRASOUND IMAGING 15 2.3 3D IMAGE PROPERTIES 17 2.4 4D IMAGE PROPERTIES 19 3 SYSTEM ARCHITECTURE AND METHODOLOGIES 23 3.1 SYSTEM ARCHITECTURE 23 3.2 PREPROCESSING 24 3.2.1 Despeckling first order statistics filtering 25 3.2.2 Feature extraction 28 3.2.2.1 Co-occurrence matrix 29 3.2.2.2 Neighborhood gray tone difference matrix 31 3.2.3 Feature selection 33 3.2.3.1 The initialization and stop criterion in stepwise regression 35 3.2.3.2 The forward entry 36 3.2.3.3 The backward removal 37 3.3 3D MOTION TRACKING STRATEGY 40 3.3.1 Good discriminating neighbor reference 40 3.3.2 Motion prediction of 3D system 44 3.3.3 Motion estimation of 3D system in multi-template framework 48 3.3.3.1 Candidates selection 50 3.3.3.2 Best candidate selection 53 3.3.3.3 Optimal solution of homogeneous region 53 3.4 4D MOTION TRACKING STRATEGY 56 3.4.1 Muscular motion model 60 3.4.2 Multilevel multi-feature block matching 60 3.4.3 Section adjustment 66 3.4.4 Drift correction 69 4 EXPERIMENTAL RESULTS AND DISCUSSION 72 4.1 ULTRASOUND EQUIPMENT 72 4.2 EXPERIMENTAL METHOD 72 4.3 RESULTS OF IN VIVO MUSCULOSKELETAL ULTRASONIC IMAGE SEQUENCES 73 4.3.1 3D trajectory error and inter-frame displacement error 74 4.3.2 4D trajectory error and inter-frame displacement error 83 4.3.3 3D and 4D trajectories comparison 100 5 CONCLUSIONS 116 6 FUTURE WORK 119 7 REFERENCES 120

    [1] Jon C. Thompson, M.D., Netter’s Concise Atlas of Orthopaedic Anatomy, 2nd edition, Icon Learning Systems LLC, 2002.
    [2] M. Suhling, M. Arigovindan, C. Jansen, P. Hunziker, and M. Unser, ”Myocardial motion analysis from B-mode echocardiograms,” IEEE Trans. on Image Processing, vol. 14, pp. 525-553, 2005.
    [3] B. D. Lucas and T. Kanade, "An iterative image registration technique with an application to stereo vision," presented at International Joint Conference on Artificial Intelligence (IJCAI), pp. 674-679, 1981.
    [4] B. Cohen, I. Dinstein, “New maximum likelihood motion estimation schemes for noisy ultrasound images,” Pattern Recognition, pp. 455-463, 2002.
    [5] F. Yeung, S. F. Levinson, K. J. Parker, “Multilevel and motion model-based ultrasonic speckle tracking algorithms,” Ultrasound in Medicine & Biology, pp. 427-441, 1998.
    [6] C. I. Christodoulou, C. S. Pattichis, M. Pantziaris, and A. Nicolaides, “Texture-Based Classification of Atherosclerotic Carotid Plaques,” IEEE Trans. on Medical Imaging, VOL. 22, pp. 902-912, 2003.
    [7] T. A. Tuthill, J. M. Rubin, J. B. Fowlkes, D. A. Jamadar and R. O. Bude, “Frequency analysis of echo texture in tendon,” Ultrasound in Med. & Biol., Vol. 25, No. 6, pp. 959–968, 1999.
    [8] G. R. Bashford and O. T. von Ramm, “Ultrasound three-dimentaional velocity measurements by feature tracking,” IEEE trans. on ultrasonics, ferroelectrics, and frequency control, Vol. 43, No. 3, 1996.
    [9] J. Revell, M. Mirmehdi, and D. McNally, “Computer vision elastography: speckle adaptive motion estimation for elastography using ultrasound sequences,” IEEE Trans. on Medical Imaging, Vol. 24, 2005.
    [10] A. Krupa, G. Fichtinger and G. D. Hager, “Full motion tracking in ultrasound using image speckle information and visual servoing,” IEEE International Conference on Robotics and Automation, pp. 2458-2464, 2007.
    [11] W. M. Chen, R. F. Chang, S. J. Kuo, C. S. Chang W. K. Moon, H. T. Chen and D. R. Chen, “3-D ultrasound texture classification using run difference matrix,” Ultrasound in Med. & Biol., Vol. 31, No. 6, pp. 763–770, 2005.
    [12] E. N. K. Kollorz, D. A. Hahn, R. Linke, T. W. Goecke, J. Hornegger, and T. Kuwert, “Quantification of thyroid volume using 3-D ultrasound imaging,” IEEE Trans. on Medical Imaging, Vol. 27, No. 4, 2008.
    [13] A. A. Morsy and O. T. von Ramm, “FLASH correlation: A new method for 3-D ultrasound tissue motion tracking and blood velocity estimation,” IEEE trans. on ultrasonics, ferroelectrics, and frequency control, vol. 46, no. 3, 1999
    [14] J. Kuo and O. T. von Ramm, “Three-dimensional motion measurements using feature tracking,” IEEE trans. on ultrasonics, ferroelectrics, and frequency control, vol. 55, no. 4, 2008.
    [15] http://www.terason.com/products/t3000.asp
    [16] http://www.gehealthcare.com/euen/ultrasound/flash/voluson-e8/v2.html
    [17] http://www.selfcare4rsi.com/fascia.html
    [18] J. S. Lee, “Digital image enhancement and noise filtering by using local statistics,” IEEE Trans. on Pattern Anal. Machine Intell., pp. 165–168, 1980.
    [19] Y. Yongjian and S. T. Acton, “Speckle reducing anisotropic diffusion,” IEEE Trans. Image Processing, vol. 11, no. 11, pp.1260–1270, Nov. 2002.
    [20] J. S. Lee, “Speckle analysis and smoothing of synthetic aperture radar images,” Comput. Graph. Image Processing, vol. 17, pp.24–32, 1981.
    [21] D. T. Kuan, A. A. Sawchuk, T. C. Strand, and P. Chavel, “Adaptive restoration of images with speckle,” IEEE Trans. Acoust. Speech Signal Processing, vol. ASSP-35, pp. 373–383, 1987.
    [22] J. S. Lee, “Digital image enhancement and noise filtering by using local statistics,” IEEE Trans. Pattern Anal. Machine Intell., vol. PAMI-2, no. 2, pp. 165–168, 1980.
    [23] K. Abd-Elmoniem, A.-B. Youssef, and Y. Kadah, “Real-time speckle reduction and coherence enhancement in ultrasound imaging via nonlinear anisotropic diffusion,” IEEE Trans. Biomed. Eng., vol. 49, no. 9, pp. 997–1014, Sep. 2002.
    [24] S. Zhong and V. Cherkassky, “Image denoising using wavelet thresholding and model selection,” in Proc. IEEE Int. Conf. Image Processing, Nov. 2000, pp. 1–4.
    [25] V. Dutt, “Statistical analysis of ultrasound echo envelope,” Ph.D. dissertation, Mayo Graduate School, Rochester, MN, 1995.
    [26] M. Amadasun, and R. King, “Textural Features Corresponding to Textural Properties,” IEEE Trans. on Systems, Man, and Cybernetics, Vol. 19, 1989.
    [27] R. M. Haralick, K. Shanmugam, and Its’hak Dinstein, “Textural Features for Image Classification,” IEEE Trans. on Systems, Man, and Cybernetics, 1973
    [28] R. E. Kalman, “A New Approach to Linear Filtering and Prediction Problems,” Transaction of the ASME—Journal of Basic Engineering, pp. 35-45, March 1960.

    下載圖示 校內:2011-08-13公開
    校外:2011-08-13公開
    QR CODE