簡易檢索 / 詳目顯示

研究生: 陳彥憲
Chen, Yen-Hsien
論文名稱: 應用於溫度分布調整器達成可調式光波長塞取多工器及低色散濾波器之研究
Tunable Optical Add-Drop Multiplexer and Low Dispersion filter with Temperature Distribution Adjustment
指導教授: 黃振發
Huang, Jen-Fa
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程研究所
Institute of Electro-Optical Science and Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 56
中文關鍵詞: 光波長塞取多工器相位型光纖光柵
外文關鍵詞: OADM, phase-shift FBG
相關次數: 點閱:95下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們知道分波多工(wavelength-division multiplexing)之通訊系統能對於系統中的頻寬可得到更有效的運用。然而光波長塞取多工器在這系統中是一個重要的元件,主要的功能是可以選擇我們所需要的波長,但在很多文獻中所提供的光波長塞取多工器都為固定式,然而本論文中我們將利用溫度分布來改變布拉格光纖光柵反射頻譜來達成可調式的光波長塞取多工器。除此,我們也將利用溫度分布的方法來降低波長濾波器的色散現象。
    當我們想把分波多工系統的容量提升,也就是需要把波長頻寬從0.8nm到0.4nm或是更小的高密度波多工系統時,而相位型光纖光柵可以將波長的頻寬降到10pm以下,除此之外,相位型光纖光柵也已經利用於雷射等方面,所以相位型光纖光柵也變成未來很重要的元件,而我們也將提供利用兩個溫度調變後之反射頻譜強度及基因演算法來重建相位型光纖光柵的各項參數。

    The use of a Wavelength-division multiplexing (WDM) based communication system allows for better utilization of the spectral bandwidth resources available to the system. The Optical Add-Drop Multiplexer (OADM) is very important component in the system and the main function is the selective wavelength. In OADMs configuration, it is usually design to add and drop fixed wavelength channels. However, we will propose a new simplified and low-cost configuration based on tunable OADM with thermal controller. In addition, the low dispersion filter is also obtained by the temperature distribution.
    When the transmission capacity in the system want to be increased, the transmission bandwidth must drop for 0.8 nm to 0.4 nm or more narrow such as Dense Wavelength-division multiplexing (DWDM). Then, the passband of a phase-shift FBG can be smaller than 10 pm. The phase-shift FBG will become an important component because it has applied to the distributed feedback (DFB) fiber lasers, tunable loss filters and so on. The study has proposed a synthesis technique for the reconstruction of the multiple parameters using a genetic algorithm and two thermally modulated intensity spectra.

    Chapter 1 Introduction 1 1.1 WDM 1 1.2 The Motivations of the Research 4 1.3 Sections Preview 5 Chapter 2 Fiber Bragg Grating Theory and Genetic Algorithm 7 2.1 Fundamentals of Fiber Bragg Gratings 7 2.2 Phase Properties of Fiber Bragg Gratings 12 2.3 Thermal Sensitivity of Fiber Bragg Gratings14 2.4 Transfer Matrix Method 17 2.5 Genetic Algorithm Preliminaries and Process19 2.5.1 Reproduction 20 2.5.2 Crossover 21 2.5.3 Mutation 21 2.5.4 The Real-Coded Genetic Algorithm 22 Chapter 3 Tunable OADM and Low Dispersion FBG Filter with Adjusting Temperature Distribution 24 3.1 OADM Description 24 3.2 Fabrication of Chirped Fiber Bragg Grating 25 3.3 The Experiment Setup 26 3.4 Simulated Results 28 3.5 The Low Dispersion Filter with Adjusting Temperature Distribution 31 Chapter 4 Reconstruction of Phase-shift Fiber Bragg Grating Parameters 37 4.1 Phase-shift Fiber Bragg Grating of the Reconstructive Algorithm 37 4.1.1 Thermally-Modulated Reflection Intensity Spectra Method 38 4.1.2 Methodology and Implementation 39 4.2 Numerical Results 45 Chapter 5 Conclusions 51

    [1] H. Lee and G. P. Agrawal, "Purely Phase-Sampled Fiber Bragg Gratings for Broad-Band Dispersion and Dispersion Slope Compensation," IEEE Photon. Technol. Lett., vol. 15, no. 8, pp. 1091-1093, Aug. 2003.
    [2] C. Marra, A. Nirmalathas, D. Novak, C. Lim, L. Reekie, J. A. Besley, C. Weeks, and N. Baker, "Wavelength-Interleaved OADMs Incorporating Optimized Multiple Phase-Shifted FBGs for Fiber-Radio Systems," J. Lightwave Technol., vol. 21, no. 1, pp. 32-39, Jan. 2003.
    [3] H. Lee and G. P. Agrawal, "Add-Drop Multiplexers and Interleavers with Broad-Band Chromatic Dipersion Compensation Based on Purely Phase-Sample Fiber Gratings," IEEE Photon. Technol. Lett., vol. 16, no.2, Feb. 2004.
    [4] L. Eldada, R. Blomquist, M. Maxfield, D. Pant, G. Boudoughian, C. Poga, R. A. Norwood, "Thermooptic Planar Bragg Gratings OAMD’s with Braod Tuning Range," IEEE. Photon. Technol. Lett., vol. 11, no. 4, Apr. 1999.
    [5] J. Skaar, and O. H. Waagaard, "99.9% Reflectivity Dispersion-less Square-Filter Fiber Bragg Gratings for High Speed DWDM Networks," in Proc. Optical Fiber Communication Conf., Baltimore, MD, vol. 4, pp.230-232, March 2000.
    [6] J. Skaar, L. Wang, and T. Erdogan, "On the Synthesis of Fiber Bragg Gratings by Layer Peeling," IEEE J. Quantum Electron, vol. 37, pp 165-173, Feb. 2001.
    [7] N. Q. Ngo, S. Y. Li, L.N. Binh, and S. C. Tjin, "A Phase-Shifted Linearly Chirped Fiber Bragg Grating with Tunable Bandwidth," Optics Communications, vol. 260, pp 438-441, Apr. 2006.
    [8] D. Jiang, X. Chen, Y. Dai, H. Liu, and S. Xie, "A Novel Distrubuted Feedback Fiber Laser Based on Equivalent Phase Shift," IEEE Photonic Technology Letter, vol. 16, no. 12, pp. 2598-2600, Dec. 2004.
    [9] J. A. Rogers, B. J. Eggleton, R. J. Jackman, G. R. Kowach, T. A. Strasser, "Dual on-fiber Thin Film Heaters for Fiber Gratings with Independently Adjustable Chirp and Wavelength," Opt. Lett. vol. 24, pp. 1328-1330, Oct. 1999.
    [10] A. A. Abramov, B. J. Eggleton, J. A. Rogers, R. P. Espindola, A. Hale, R. S. Windeler, T. A. Strasser, "Electrically Tunable Efficient Broad-band Fiber Filter," IEEE Photon. Technol. Lett., vol. 11, pp. 445-447, Apr. 1999.
    [11] B. J. Eggleton, J. A. Rogers, J. R. Pedrazzani, T. A. Strasser, "Electrically Tunable Power Efficient Dispersion Compensating Fiber Bragg Grating," IEEE Photon. Technol. Lett., vol. 11, pp. 854-856, Jul. 1999.
    [12] K.O. Hill, and G. Meltz, “Fiber Bragg Grating Technology Fundamentals and Overview,” IEEE J. Lightwave Technol., vol. 15, no. 8, pp. 1263-1276, Aug. 1997.
    [13] T. Erdogan, “Fiber Grating Spectra,” IEEE J. Lightwave Technol., vol.15, no. 8, pp.1277-1294, Aug. 1997.
    [14] S. Gupta, T. Mizunami, and T. Shimomura, “Computer Control of Fiber Bragg Grating Spectral Characteristics Using a Thermal Head,” IEEE J. Lightwave Technol., vol. 15, no. 10, pp. 1925-1928, Oct. 1997.
    [15] B. Dabarsyah, C. S. Goh, S. K. Khijwania, S. Y. Set, and K. Kikuchiand, “Adjustable Dispersion-Compensation Devices with Wavelength Tunability Based on Enhanced Thermal Chirping of Fiber Bragg Gratings,” IEEE Photonics Technology Lett., vol. 15, no. 3, pp. 416-418, Mar. 2003.
    [16] J. Lauzon, S. Thibault, J. Martin, and F. Ouellettet, “Implementation and Characterization of Fiber Bragg Gratings Linearly Chirped by a Temperature Gradient,” Optics Let. , vol. 19, no. 23, pp. 2027-2029, Dec. 1994.
    [17] S. K. Khijwania, C. S. Goh, S. Y. Set, K. Kikuchi, “A Novel Tunable Dispersion Slope Compensator Based on Nonlinearly Thermally Chirped Fiber Bragg Grating,” Optics Communications , vol. 227, pp. 107–113, Nov. 2003.
    [18] B. J. Eggleton, B. Mikkelsen, G. Raybon, A. Ahuja, J. A. Rogers, P. S. Westbrook, T. N. Nielsen, S. Stulz, and K. Dreyer, “Tunable Dispersion Compensation in a 160-Gb/s TDM System by a Voltage Controlled Chirped Fiber Bragg Grating,” IEEE Photonics Technology Lett., vol.12, no. 8, pp. 1022-1024, Aug. 2000.
    [19] S. Huang, M. LeBlanc, M. M. Ohn, and R. M. Measures, “Bragg Intragrating Structural Sensing,” Applied Optics, vol. 34, no. 22, pp. 5003-5009, Aug. 1995.
    [20] J. H. Holland, Adaption in Natural and Artificial Systems. Cambridge, MA: The M.I.T Press, 1975.
    [21] K. C. Byron, K. Sugden, T. Bricheno, and I. Bennion, “Fabrication of Chirped Bragg Gratings in Photosensitive Fiber,” Electronics Letters, vol. 29, pp. 1659-1660, Sep. 1993.
    [22] K. Sugden, I. Bennion, A. Molony, N. J. Copner, “Chirped Gratings Produced in Photosensitive Optical Deformation during Expsure,” Electronics Letters, vol. 30, pp. 440-441, Mar. 1994.
    [23] A.K. Ahuja, P.E. Steinvurzel, B.J. Eggleton, J.A. Rogers, "Tunable Single Phase-shifted and Superstructure Gratings Using Microfabrcated on-fiber Thin Film Heaters," Optics communications, vol. 184, pp.119-125, Oct. 2000.
    [24] P. Minzioni, and M. Tormen, "Bragg Gratings: Impact of Apodization Lobes and Design of a Dispersionless Optical Filter," IEEE J. Lightwave Technol., vol. 24, no. 1, pp. 605-611, Jan. 2006.
    [25] H. C. Cheng and Y. L. Lo, “The Synthesis of Multiple Parameters of Arbitrary FBGs via a Genetic Algorithm and Two Thermally Modulated Intensity Spectra,” IEEE J. Lightwave Technol., vol. 23, no. 6, pp. 2158-2168, Jun. 2005.
    [26] J. F. Huang, Y. L. Lo, H. C. Cheng, and S. H. Huang, "Reconstruction of Chirped Fiber Bragg Grating Parameters and Phase Spectrum Using Two Thermally Modulated Intensity Spectra and Genetic Algorithm," IEEE Photonic Technology Letters, vol. 18, no. 2, pp. 346-348, Jan. 2006.
    [27] Z. Michalewicz, Genetic Algorithms + Data structures = Evolution Programs, New York: Springer-Verlag, 1992.

    下載圖示 校內:2007-07-19公開
    校外:2007-07-19公開
    QR CODE