簡易檢索 / 詳目顯示

研究生: 蔡孟翰
Tsai, Meng-Han
論文名稱: 自然通風設計對火災排煙之影響
The Influence of Natural Ventilation Design on Smoke Exhaust in Fires
指導教授: 林大惠
Lin, Ta-Hui
共同指導教授: 賴啟銘
Lai, Chi-Ming
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 99
中文關鍵詞: 自然通風設計火災實尺寸實驗數值模擬FDS煙層
外文關鍵詞: Nature Ventilation Design, Fire, Full-Scale Experiment, FDS, Smoke Layer
相關次數: 點閱:141下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究之目的在於探討自然通風設計是否對防火安全造成影響。利用實尺寸實驗的方式來比較其自然通風流道的設置對煙層下降快慢的影響。並利用FDS模擬相同的場景,驗證FDS的準確性。
    根據案例的分析,研擬出一座含三間房間的實驗空間,利用50千瓦的油盤產生濃煙,觀察煙層流動與下降情形,從實驗結果來推論自然通風流道的設置對煙流情勢的影響。
    實驗結果發現,本研究的設計場景中,當火災發生在沒有自然通風流道的房間時,其火災室的煙層下降情勢與鄰室自然通風流道的設置較無關聯,而鄰室的煙層則因為自然通風流道的設置而延緩煙層下降時間;而當火災發生在設有自然通風流道的房間時,其自然通風流道可有效的延緩煙層下降速度,並提高煙層的平衡高度。當自然通風設計中包含外風直接貫流入室內時,外風會造成室內煙層的擾動,並抵抗煙氣的排放,使得煙氣在室內擴散的更快,造成逃生的危險。
    FDS的模擬中,溫度曲線與實驗的溫度曲線大致上相同。利用FDS所算出來的煙層下降曲線,也與實驗所觀測之煙層位置符合。這說明了FDS在本次實驗中有相當良好的預測性。

    The purpose of this research is to investigate influence of the natural ventilation design on fire safety. Change in descending rate of the smoke level with a vertical ventilated shaft is explored by full-scale experiments. FDS is also applied to simulate the same scenes and to verify the accuracy here.
    A space with three rooms was built to analyze different cases. Small pool fire (~50kW) was lit up to generate smoke. The drop of smoke level and smoke flow pattern in different conditions were observed.
    Results show that when fire occurred in the room without natural ventilation shaft (NV-shaft), the smoke descending rate is less related to NV-shaft within the next room. Smoke layer descending rate is hold by the ventilation of NV-shaft in the next room. When fire occurs in the room with NV-shaft, the smoke descending rate will be delayed; therefore the smoke level will be lifted. When the nature ventilation design contains a device to induce the wind to blow inside the room, the wind will disturb the smoke and keep smoke from emitting out. It will be dangerous because the smoke will diffuse faster.
    The temperature curve simulated by FDS is nearly the same as experimental measurements. The smoke descending rate correlates well with the smoke layer height observed experimentally as well. It shows that FDS has good prediction on the smoke layer in this scenario.

    一、前言 1 1-1 文獻回顧 2 1-1-1 自然通風設計 2 1-1-2 進行自然通風設計時可同步考量防火安全 4 1-1-3 FDS相關文獻 7 1-2 研究目的 10 二、實驗設備與規劃 11 2-1 實驗設備 11 2-1-1 實驗場整體設計 11 2-1-2 實驗設備 13 2-2 實驗規劃 14 2-2-1 實驗項目規劃 14 2-2-2 實驗步驟 15 2-3 研究方法 16 三、數值模擬 18 3-1 模型建立的理論基礎 18 3-1-1 熱流模型 18 3-1-2 燃燒模型 19 3-1-3 熱輻射模型 21 3-1-4 熱邊界條件 22 3-2 模擬參數設定 23 3-2-1 模擬場景尺寸設定 23 3-2-2 軟體與空間網格設定 24 3-2-3 表面材料設定 24 3-2-4 場景條件設定 25 四、結果與討論 26 4-1 實驗結果 26 4-1-1 溫度曲線變化 26 4-1-2 煙層下降曲線分析 27 4-1-3 影像分析 29 4-2 FDS模擬結果 31 4-2-1溫度曲線變化 31 4-2-2煙層下降曲線分析 32 4-3 實驗與FDS模擬結果之比較 33 五、結論與建議 38 5-1 結論 38 5-1-1 高溫熱環境之煙層高度判斷方式 38 5-1-2 在全尺度煙流實驗方面 38 5-1-3 在FDS數值模擬方面 39 5-2 建議 39 5-2-1 N-percentage rule中選用適當的N值 39 5-2-2 戶外風速大小對室內煙層的影響 40 六、參考文獻 41 七、圖表 46 八、附錄 72

    1. Lai, C. M., “Experiments on the ventilation efficiency of turbine ventilators used for building and factory ventilation,” Energy and Buildings, Vol. 34, pp. 927-932, 2003.
    2. Mistriotis, A., Arcidianoco, C., Picuno, P., Bot, G.A., Scarascia Mugnozza, G., “Computational analysis of the natural ventilation in greenhouses at low wind speed,” Agricultural and Forest Meteorology, Vol. 88, pp.121-135, 1997.
    3. Arce, J., Jimenez, M. J.,Guzman, J. D., Heras, M. R., Alvarez, G., Xaman, J., “Experimental study for natural ventilation on solar chimney,” Renewable Energy, Vol. 34, pp. 2928-2934, 2009.
    4. Punyasompun, S., Hirunlaba, J., Khedari, J., Zeghmati, B., “Investigation on the application of solar chimney for multi-storey buildings,” Renewable Energy, Vol. 34, pp. 2545-2561, 2009.
    5. Chungloo, S., Limmeechokchai, B., “Application of passive cooling systems in the hot and humid climate: The case study of solar chimney and wetted roof in Thailand,” Building and Environment, Vol. 42, pp. 3341-3351, 2007.
    6. Ding, W., Minegishi, Y., Hasemi, Y., Yamada, T., “Smoke control based on a solar-assisted natural ventilation system,” Building and Environmant, Vol. 39, pp. 775-782, 2004.

    7. Chen, H., Liu, N., Chow, W., “Wind effects on smoke motion and temperature of ventilation-controlled fire in a two-vent compartment,” Building and Environment, Vol. 44, pp. 2521-2526, 2009.
    8. Chow, W. K., Hung, W. Y., Gao, Y., Zou, G., Dong, H., “Experimental study on smoke movement leading to glass damages in double-skinned façade,” Construction and Building Materials, Vol. 21, PP. 556-566, 2007.
    9. Short, C. A., Ehittle, G. E., Owarish, M., “Fire and smoke control in naturally ventilated buildings,” Building Research & Information, Vol. 34, pp. 23-54, 2009.
    10. Hung, W. Y., Chow, W. K., “A review on architectural aspects of atrium buildings.” Architectural Science Review, Vol. 44(3), pp. 285-295, 2001.
    11. Chow, W. K., “Performance of sprinkler in atria.” Journal of Fire Sciences, Vol. 14, pp. 466-488, 1996.
    12. Merci, B., Vandevelde, P., “Experimental study of natural roof ventilation in full-scale enclosure fire tests in a small compartment,” Fire Safety Journal, Vol. 42, pp. 523-535, 2007.
    13. Cheung, A. L. K., Lee, E. W. M., Yuen, R. K. K., Yeoh, G. H. and Cheung, S. C. P., “Capturing the Pulsation Frequency of a Buoyant Pool Fire Using the Large Eddy Simulation Approach,” Numerical Heat Transfer, Part A: Applications, Vol. 53, pp. 561-576, 2008.

    14. Wen, J. X., Kang, K., Donchev, T. and Karwatzki, J. M., “Validation of FDS for the Prediction of Medium-Scale Pool Fires,” Fire Safety Journal, Vol. 42, pp. 127-138, 2007.
    15. Chow, W. K. and Zou, G. W., “Correlation Equations on Fire-Induced Air Flow Rates through Doorway Derived by Large Eddy Simulation,” Building and Environment, Vol. 40, pp. 897-906, 2005.
    16. Musser. A. and McGrattan, K., “Evaluation of a Fast Large-Eddy- Simulation Model for Indoor Airflows,” Journal of Architectural Engineering, Vol. 8, pp. 10-18, 2002.
    17. Lin, C. S., Wang, S. C., Hung, C. B. and Hsu, J. H., “Ventilation Effect on Fire Smoke Transport in a Townhouse Building,” Heat Transfer-Asian Research, Vol. 35, pp. 387-401, 2006.
    18. Kerber, S., and Milke, J. A., “Using FDS to Simulate Smoke Layer Interface Height in a Simple Atrium,” Fire Technology, Vol. 43, pp. 45-75, 2007.
    19. Yi, L., Chow, W. K., Li, Y. Z., Huo, R., “A Simple Two-Layer Zone Model on Mechanical Exhaust in an Atrium,” Building and Environment, Vol. 40, pp. 869-880, 2005.
    20. Kim, S. C. and Ryou, H. S., “An Experimental and Numerical Study on Fire Suppression Using a Water Mist in an Enclosure,” Building and Environment, Vol. 38, pp. 1309-1316, 2003.
    21. Zou, G. W. and Chow, W. K., “Evaluation of the Field Model, Fire Dynamics Simulation, for a Specific Experimental Scenario,” Journal of Fire Protection Engineering, Vol. 15, pp. 77-92, 2005.
    22. Zhang, W., Hamer, A., Klassen, M., Carpenter, D. and Roby, R., “Turbulence Statistics in a Fire Room Model by Large Eddy Simulation,” Fire Safety Journal, Vol. 37, pp. 721-752, 2002.
    23. Shen, T. S., Huang, Y. H. and Chien, S. W., “Using Fire Dynamic Simulation to Reconstruct an Arson Fire Scene,” Building and Environment, Vol. 43, pp. 1036-1045, 2008.
    24. Pope, N. D. and Bailey, C. G., “Quantitative Comparison of FDS and Parametric Fire Curves with Post-Flashover Compartment Fire
    25. Hu, Z., Utiskul, Y., Quintiere, J. G. and Trouve, A., “Towards Large Eddy Simulations of Flame Extinction and Carbon Monoxide Emission in Compartment Fires,” Proceedings of Combustion Institute, Vol. 31, pp. 2537-2545, 2007.
    26. McGrattan, K. B., “Fire Modeling: Where are we? Where are we going,” Fire Safety Science - Proceedings of The 8th International Symposium, International Association For Fire Safety Science, pp. 53-68, September 2005.
    27. Babrauskas, V., “Burning Rates,” The SFPE Handbook of Fire Protection Engineering, National Fire Protection Association, Chapter 3-1, 1988.
    28. 戴文聖,”大空間建築偵煙系統鳴動對於機械排煙性能之影響分析”,國立中山大學機械與機電工程研究所,民國94年。
    29. Cooper, L. Y., Harkleoad, M., Quintiere, J., Rinkinen, W., “An Experimental Study of Upper Hot Layer Stratification in Full-Scale Multiroom Fire Scenarios,” ASME, 1981.
    30. NFPA 92B, “Guide for Smoke Management Systems in Malls, Atria, and Large Areas,” 2000.
    31. McGrattan, K. B., “Fire Dynamics Simulator (Version 5) Technical Reference Guide,” National Institute of Standards and Technology Special Publication 1018-5, October 2007.
    32. Huggett, C., “Estimation of the Rate of Heat Release by Means of Oxygen Consumption Measurements,” Fire Materials, Vol. 4, pp. 61-65, 1980.
    33. Atreya. A., “Pyrolysis, Ignition and Fire Spread on Horizontal Surfaces of Wood,” NBS-GCR-83-449, National Bureau of Standards (now NIST), Gaithersburg, Maryland, 1983.
    34. Ritchie, S. J., Steckler, K. D., Hamins, A., Cleary, T. G., Yang, J. C. and Kashiwagi, T., “The Effect of Sample Size on the Heat Release Rate of Charring Materials,” In Fire Safety Science - Proceedings of the 5th International Symposium, International Association For Fire Safety Science, pp. 177-188, March 1997.

    下載圖示 校內:立即公開
    校外:2013-07-29公開
    QR CODE